rice pathogens
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 2)

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1169
Author(s):  
Cuong C. Nguyen ◽  
Thanh Q. C. Nguyen ◽  
Kenji Kanaori ◽  
Tran Duy Binh ◽  
Xuyen H. T. Dao ◽  
...  

Blast disease and sheath blight disease caused by infection with Pyricularia oryzae and Rhizoctonia solani, respectively, are serious fungal diseases in paddy fields. Although synthetic fungicides have been used to control these diseases, the development of ecologically friendly alternatives is required because fungicides can cause health problems and environmental pollution. Natural herbs possessing antifungal activities are among the candidates as alternatives. Ageratum conyzoides is known to contain antifungal compounds, such as precocene II and polymethoxyflavones. Here, we report the antifungal activities of five compounds isolated after ethanol extraction from Ageratum conyzoides against Pyricularia oryzae and Rhizoctonia solani in vitro. Further, we demonstrated the protective effect of the extract on rice from Pyricularia oryzae infection by field trial testing in a shaded net-house.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sohini Deb ◽  
Vishnu Narayanan Madhavan ◽  
C. G. Gokulan ◽  
Hitendra K. Patel ◽  
Ramesh V. Sonti

AbstractThe plant immune system has evolved to resist attack by pathogens and pests. However, successful phytopathogens deliver effector proteins into plant cells where they hijack the host cellular machinery to suppress the plant immune responses and promote infection. This manipulation of the host cellular pathways is done by the pathogen using various enzymatic activities, protein- DNA or protein- protein interactions. Rice is one the major economically important crops and its yield is affected by several pathogens and pests. In this review, we summarize the various effectors at the plant- pathogen/ pest interface for the major pathogens and pests of rice, specifically, on the mode of action and target genes of the effector proteins. We then compare this across the major rice pathogens and pests in a bid to understand probable conserved pathways which are under attack from pathogens and pests in rice. This analysis highlights conserved patterns of effector action, as well as unique host pathways targeted by the pathogens and pests.


2021 ◽  
pp. 103243
Author(s):  
Nitesh Singh ◽  
Aadil Mansoori ◽  
Gitanjali Jiwani ◽  
Amolkumar U. Solanke ◽  
Tarun K. Thakur ◽  
...  

2021 ◽  
Author(s):  
Mingfeng Feng ◽  
Luyao Li ◽  
Ruixiang Cheng ◽  
Yulong Yuan ◽  
Yongxin Dong ◽  
...  

ABSTRACTNegative-stranded RNA (NSR) viruses include both animal- and plant-infecting viruses that often cause serious diseases in human and livestock, and in agronomic crops. Rice stripe tenuivirus (RSV), a plant NSR virus with four negative-stranded/ambisense RNA segments, is one of the most destructive rice pathogens in many Asian countries. Due to the lack of a reliable reverse-genetics technology, molecular studies of RSV gene functions and its interaction with host plants are severely hampered. To overcome this obstacle, we developed a mini-replicon-based reverse-genetics system for RSV gene functional analysis in Nicotiana benthamiana. We first developed a mini-replicon system expressing RSV genomic RNA3 eGFP reporter (MR3(-)eGFP), a nucleocapsid (NP), and a codon usage optimized RNA-dependent RNA polymerase (RdRpopt), respectively. Using this mini-replicon system we determined that RSV NP and RdRpopt are indispensable for the eGFP expression from MR3(-)eGFP. The expression of eGFP from MR3(-)eGFP can be significantly enhanced in the presence of NSs and P19-HcPro-γb. In addition, NSvc4, the movement protein of RSV, facilitated eGFP trafficking between cells. We also developed an antigenomic RNA3-based replicon in N. benthamiana. However, we found that the RSV NS3 coding sequence acts as a cis-element to regulate viral RNA expression. Finally, we made mini-replicons representing all four RSV genomic RNAs. This is the first mini-replicon-based reverse-genetics system for monocot-infecting tenuivirus. We believe that this mini-replicon system described here will allow the studies of RSV replication, transcription, cell-to-cell movement and host machinery underpinning RSV infection in plants.IMPORTANCEPlant-infecting segmented negative-stranded RNA (NSR) viruses are grouped into 3 genera: Orthotospovirus, Tenuivirus and Emaravirus. The reverse-genetics systems have been established for members in the genera Orthotospovirus and Emaravirus, respectively. However, there is still no reverse-genetics system available for Tenuivirus. Rice stripe virus (RSV) is a monocot-infecting tenuivirus with four negative-stranded/ambisense RNA segments. It is one of the most destructive rice pathogens and causes significant damages to rice industry in Asian countries. Due to the lack of a reliable reverse-genetics system, molecular characterizations of RSV gene functions and the host machinery underpinning RSV infection in plants are extremely difficult. To overcome this obstacle, we developed a mini-replicon-based reverse-genetics system for RSV in Nicotiana benthamiana. This is the first mini-replicon-based reverse-genetics system for tenuivirus. We consider that this system will provide researchers a new working platform to elucidate the molecular mechanisms dictating segmented tenuivirus infections in plant.


2021 ◽  
Author(s):  
Yulin Jia ◽  
Melissa H. Jia

Rice is one of the most important food crops for mankind and suffers significant crop loss annually due to rice diseases. Availability of genome sequences of rice has served as a springboard to utilize its innate immunity to prevent rice diseases. Knowledge on interactions of rice and rice pathogens has rapidly accumulated. Effective resistance genes have been identified from cultivated, weedy species of rice, and wild rice relatives and their roles in plant innate immunity have been uncovered. Presently, rice diseases are being managed using host resistance genes and pesticides in diverse culture systems around the globe. This chapter presents a simple review of interactions of rice with harmful microbes causing the two major damaging diseases, rice blast and sheath blight. The review is written to target new readers in life sciences. Knowledge and critical literatures on physiological, genetic, and ecological aspects of host-pathogen interactions are presented to gain insights leading to sustainable disease management systems.


2021 ◽  
Vol 9 (4) ◽  
pp. 682
Author(s):  
Mohamad Syazwan Ngalimat ◽  
Erneeza Mohd Hata ◽  
Dzarifah Zulperi ◽  
Siti Izera Ismail ◽  
Mohd Razi Ismail ◽  
...  

As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain losses were alarming and resulted in a heightened awareness on the importance of rice plants’ health and increased interest against phytopathogens in rice. To serve this interest, this review will provide a summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including biocontrol of bacterial rice pathogens and enhancement of rice plant’s growth. Currently, a plethora of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions. As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in improving rice plants’ health and simultaneously controlling bacterial rice pathogens in vitro and in the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now very well-known. Applications of PGPB as bioformulations are found to be effective in improving rice productivity and provide an eco-friendly alternative to agroecosystems.


2021 ◽  
Vol 51 ◽  
Author(s):  
Jacqueline Campos Borba de Carvalho ◽  
Amanda Abdallah Chaibub ◽  
Kellen Cristhina Inácio Sousa ◽  
Denise Candini de Brito ◽  
Marta Cristina Corsi de Filippi ◽  
...  

ABSTRACT Waitea circinata (Warcup & Talbot) is an orchid antagonist mycorrhizal fungus with biocontrol potential against rice pathogens. This study aimed to optimize the extraction method, obtain a new extract and evaluate its efficiency against rice pathogens in vitro and in vivo, as well as to compare it with other extraction methods and W. circinata. The extracts were obtained and screened for in vitro growth inhibition against the pathogens Cochliobolus miyabeanus, Monographella albescens and Sarocladium oryzae, using the following extracts: mycelial, crude, lyophilized and mycelial mass. An additional in vitro assay was performed with the principal rice pathogen (Magnaporthe oryzae), in order to evaluate the conidial germination and appressorium formation. Based on this evaluation, the lyophilized and mycelial mass extracts were tested in vivo against rice blast (M. oryzae) and compared to the W. circinata mycelial suspension, in different application forms (simultaneous and previous). The mycelial mass extract inhibited all the pathogens, and the crude and lyophilized extracts inhibited C. miyabeanus and M. albescens, respectively. The mycelial mass extract inhibited the M. oryzae conidial germination and appressorium formation by 80 %, and the simultaneous and previous applications suppressed the rice blast by 94 %. These results indicate that the new extract can be used to control rice pathogens.


2020 ◽  
Vol 57 (12) ◽  
pp. 4210-4214
Author(s):  
Susanta K. Borthakur ◽  
Lakhya J. Konwar ◽  
Gayatri Nath ◽  
Pabitra K. Kalita ◽  
Sukanya Borthakur
Keyword(s):  

2020 ◽  
Vol 8 (3) ◽  
pp. 362 ◽  
Author(s):  
Parichat Into ◽  
Pannida Khunnamwong ◽  
Sasitorn Jindamoragot ◽  
Somjit Am-in ◽  
Wanwilai Intanoo ◽  
...  

The phylloplane is an important habitat for yeasts and these yeasts may have antagonistic activities against pathogens and could be used as biocontrol agents. To investigate rice phylloplane yeasts, 282 strains were isolated from 89 rice leaf samples and identified as 15 known yeast species in the phylum Ascomycota and 35 known and two potential new species in the phylum Basidiomycota. The majority of rice phylloplane yeasts belonged to the phylum Basidiomycota. The evaluation of antagonistic activities of 83 yeast strains against rice pathogenic fungi Pyricularia oryzae, Rhizoctonia solani, Fusarium moniliforme, Helminthosporium oryzae and Curvularia lunata revealed that 14 strains inhibited these pathogens. Among the antagonistic strains, Torulaspora indica DMKU-RP31, T. indica DMKU-RP35 and Wickerhamomyces anomalus DMKU-RP25 inhibited all rice pathogens tested, and the production of volatile organic compounds, fungal cell wall degrading enzymes and biofilm were the possible antagonistic mechanisms against all rice pathogens tested in vitro. These yeast strains were evaluated for controlling rice sheath blight caused by R. solani in rice plants in the greenhouse and were found to suppress the disease by 60.0–70.3%, whereas 3% validamycin suppressed by 83.8%. Therefore, they have potential for being developed to be used as biocontrol agents for rice sheath blight.


2020 ◽  
Vol 28 (3) ◽  
pp. 240-242
Author(s):  
B. Rajyalakshmi ◽  
P. Nagamani ◽  
P. Madhu Sudhan

Sign in / Sign up

Export Citation Format

Share Document