scholarly journals Geostatistical analysis and isoscape of ice core derived water stable isotope records in an Antarctic macro region

Polar Science ◽  
2017 ◽  
Vol 13 ◽  
pp. 23-32 ◽  
Author(s):  
István Gábor Hatvani ◽  
Markus Leuenberger ◽  
Balázs Kohán ◽  
Zoltán Kern
2017 ◽  
Author(s):  
Sentia Goursaud ◽  
Valérie Masson-Delmotte ◽  
Vincent Favier ◽  
Anaïs Orsi ◽  
Martin Werner

Abstract. Polar ice core water isotope records are commonly used to infer past changes in Antarctic temperature, motivating an improved understanding and quantification of the temporal relationship between δ18O and temperature. This can be achieved using simulations performed by atmospheric general circulation models equipped with water stable isotopes. Here, we evaluate the skills of the high resolution water-isotope-enabled atmospheric general circulation model ECHAM5-wiso (the European Centre Hamburg Model), nudged to European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis using simulations covering the period 1960–2013 over the Antarctic continent. We compare model outputs with field data, first with a focus on regional climate variables and, second on water stable isotopes, using our updated dataset of water stable isotope measurements from precipitation, snow and firn/ice core samples. ECHAM5-wiso simulates a large increase in temperature from 1978 to 1979, possibly caused by a discontinuity in the European Reanalyses (ERA) linked to the assimilation of remote sensing data starting in 1979. The comparison with accumulation and water stable isotope data is thus restricted to the period 1979–2013, for accumulation and water stable isotope data from snow and firn/ice core. Such a restriction was not decided for the isotopic composition from precipitation data that consist in a few number of points. For this comparison, we used outputs corresponding to the same exact days of observations, even if it was before 1979. Although some model-data mismatches are observed, the (precipitation minus evaporation) outputs are found to be realistic products for surface mass balance. A warm model bias over Central East Antarctica and a cold model bias over coastal regions explain first-order δ18O model biases by too strong isotopic depletion on coastal areas and underestimated depletion inland. At the second order, despite these biases, ECHAM5-wiso correctly captures the observed spatial and seasonal patterns of δ18O. The results of model-data comparisons for the inter-annual δ18O standard deviation differ when using precipitation or ice core data. Further studies should explore the importance of deposition and post-deposition processes affecting ice core signals and not resolved in the model. Despite systematic offsets, the increase of deuterium excess from coastal to inland regions is well simulated by the model. These results build trust in the use of ECHAM5-wiso outputs to investigate the spatial, seasonal and inter-annual δ18O-temperature relationships. We show that local spatial or seasonal slopes are not a correct surrogate for inter-annual temporal slopes, leading to the conclusion that a stationary isotope-temperature slope cannot be applied for the climatic interpretation of Antarctic ice core. We finally explore the phasing between the seasonal cycles of deuterium excess and δ18O, as a source of information on changes in moisture sources affecting the δ18O-temperature relationship. The few available records and ECHAM5-wiso show different phase relationships in coastal, intermediate and central regions. This work valuates the use of the ECHAM5-wiso model as a tool for the investigation of water stable isotopes in Antarctic precipitation, and calls for extended studies to improve our understanding of such proxies.


2017 ◽  
Vol 38 (2) ◽  
pp. 105-124
Author(s):  
István Gábor Hatvani ◽  
Zoltán Kern

Abstract It is generally accepted that ice cores archive amount-weighted water stable isotope signals. In order to achieve an improved understanding of the nature of water stable isotope signals stored in ice cores annual δ18O and δ2H averages (i.e. amount-weighted) were calculated for two Antarctic meteorological stations, Vernadsky and Hal­ley Bay, using monthly precipitation amount and monthly net accumulation as weights, respectively. These were then compared with the annual mean δ18O δ2H and records of the nearest available ice cores. In addition, at the stations, both arithmetic means (i.e. time-weighted) and amount-weighted (precipitation amount and net accumulation used as weights) annual air temperature averages were calculated and then compared to amount weighted annual mean δ18O and δ2H using correlation- and regression analyses. The main hypothesis was that amount weighted annual mean water isotope and temperature records from the stations would be able to replicate the annual water isotope signal stored in ice cores to a higher degree. Results showed that (i) amount weighting is incapable of ameliorating the signal replication between the stations and the ice cores, while arithmetic means gave the stronger linear relationships; (ii) post depositional processes may have a more determining effect on the isotopic composition of the firn than expected; and (iii) mean annual air temperature provided the closest match to ice core derived annual water isotope records. This latter conveys a similar message to that of recent findings, in as much as ambient temperature, via equilibrium isotope fractionation, is imprinted into the uppermost snow layer by vapor exchange even between precipitation events. Together, these observations imply that ice core stable water isotope records can be a more continuous archive of near-surface temperature changes than hitherto believed.


2005 ◽  
Vol 51 (175) ◽  
pp. 637-654 ◽  
Author(s):  
Vladimir B. Aizen ◽  
Elena Aizen ◽  
Koji Fujita ◽  
Stanislav A. Nikitin ◽  
Karl J. Kreutz ◽  
...  

AbstractIn the summers of 2001 and 2002, glacio-climatological research was performed at 4110–4120 m a.s.l. on the Belukha snow/firn plateau, Siberian Altai. Hundreds of samples from snow pits and a 21 m snow/firn core were collected to establish the annual/seasonal/monthly depth–accumulation scale, based on stable-isotope records, stratigraphic analyses and meteorological and synoptic data. The fluctuations of water stable-isotope records show well-preserved seasonal variations. The δ18O and δD relationships in precipitation, snow pits and the snow/firn core have the same slope to the covariance as that of the global meteoric water line. The origins of precipitation nourishing the Belukha plateau were determined based on clustering analysis of δ18O and d-excess records and examination of synoptic atmospheric patterns. Calibration and validation of the developed clusters occurred at event and monthly timescales with about 15% uncertainty. Two distinct moisture sources were shown: oceanic sources with d-excess <12‰, and the Aral–Caspian closed drainage basin sources with d-excess >12‰. Two-thirds of the annual accumulation was from oceanic precipitation, of which more than half had isotopic ratios corresponding to moisture evaporated over the Atlantic Ocean. Precipitation from the Arctic/Pacific Ocean had the lowest deuterium excess, contributing one-tenth to annual accumulation.


2016 ◽  
Vol 10 (6) ◽  
pp. 2763-2777 ◽  
Author(s):  
Carmen P. Vega ◽  
Elisabeth Schlosser ◽  
Dmitry V. Divine ◽  
Jack Kohler ◽  
Tõnu Martma ◽  
...  

Abstract. Three shallow firn cores were retrieved in the austral summers of 2011/12 and 2013/14 on the ice rises Kupol Ciolkovskogo (KC), Kupol Moskovskij (KM), and Blåskimen Island (BI), all part of Fimbul Ice Shelf (FIS) in western Dronning Maud Land (DML), Antarctica. The cores were dated back to 1958 (KC), 1995 (KM), and 1996 (BI) by annual layer counting using high-resolution oxygen isotope (δ18O) data, and by identifying volcanic horizons using non-sea-salt sulfate (nssSO42−) data. The water stable isotope records show that the atmospheric signature of the annual snow accumulation cycle is well preserved in the firn column, especially at KM and BI. We are able to determine the annual surface mass balance (SMB), as well as the mean SMB values between identified volcanic horizons. Average SMB at the KM and BI sites (0.68 and 0.70 mw. e. yr−1) was higher than at the KC site (0.24 mw. e. yr−1), and there was greater temporal variability as well. Trends in the SMB and δ18O records from the KC core over the period of 1958–2012 agree well with other previously investigated cores in the area, thus the KC site could be considered the most representative of the climate of the region. Cores from KM and BI appear to be more affected by local meteorological conditions and surface topography. Our results suggest that the ice rises are suitable sites for the retrieval of longer firn and ice cores, but that BI has the best preserved seasonal cycles of the three records and is thus the most optimal site for high-resolution studies of temporal variability of the climate signal. Deuterium excess data suggest a possible effect of seasonal moisture transport changes on the annual isotopic signal. In agreement with previous studies, large-scale atmospheric circulation patterns most likely provide the dominant influence on water stable isotope ratios preserved at the core sites.


2016 ◽  
Vol 62 (236) ◽  
pp. 1037-1048 ◽  
Author(s):  
F. PARRENIN ◽  
S. FUJITA ◽  
A. ABE-OUCHI ◽  
K. KAWAMURA ◽  
V. MASSON-DELMOTTE ◽  
...  

ABSTRACTDocumenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice-sheet contribution to global mean sea-level change. Here we reconstruct past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronization of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 a, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, being small during cold periods and large during warm periods. Our results therefore reveal larger amplitudes of changes in SMB at EDC compared with DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared with DF. Within the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 0.2 from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends.


2010 ◽  
Vol 4 (3) ◽  
pp. 1343-1363 ◽  
Author(s):  
P. Ginot ◽  
U. Schotterer ◽  
W. Stichler ◽  
M. A. Godoi ◽  
B. Francou ◽  
...  

Abstract. The comparison of two shallow ice cores recovered in 1999 and 2000 from the same place on Chimborazo summit glacier revealed the influence of the coincident Tungurahua volcanic eruption on their stable isotope and chemical records. The surface snow melting and water percolation induced from the ash deposition caused a preferential elution and re-localization of certain ionic species, while the stable isotope records were not very affected. Additionally, the comparison of the ionic amount and some selected ratios preserved along the ice core column reports under which processes the chemical species are introduced in the snow pack, as snow flake condensation nuclei, by atmospheric scavenging or by dry deposition. This preliminary study is essential for the interpretation of the deep Chimborazo ice core, or for other sites where surrounding volcanic activity may disturb the glaciochemical records.


2015 ◽  
Vol 15 (21) ◽  
pp. 30473-30509
Author(s):  
E. Schlosser ◽  
B. Stenni ◽  
M. Valt ◽  
A. Cagnati ◽  
J. G. Powers ◽  
...  

Abstract. At the East Antarctic deep ice core drilling site Dome C, daily precipitation measurements have been initiated in 2006 and are being continued until today. The amounts and stable isotope ratios of the precipitation samples as well as crystal types are determined. Within the measuring period, the two years 2009 and 2010 showed striking contrasting temperature and precipitation anomalies, particularly in the winter seasons. The reasons for these anomalies and their relation to stable isotope ratios are analysed using data from the mesoscale atmospheric model WRF (Weather Research and Forecasting Model) run under the Antarctic Mesoscale Prediction System (AMPS). 2009 was relatively warm and moist due to frequent warm air intrusions connected to amplification of Rossby waves in the circumpolar westerlies, whereas the winter of 2010 was extremely dry and cold. It is shown that while in 2010 a strong zonal atmospheric flow was dominant, in 2009 an enhanced meridional flow prevailed, which increased the meridional transport of heat and moisture onto the East Antarctic plateau and led to a number of high-precipitation/warming events at Dome C. This was also evident in a positive (negative) SAM index and a negative (positive) ZW3 index during the winter months of 2010 (2009). Changes in the frequency or seasonality of such event-type precipitation can lead to a strong bias in the air temperature derived from stable water isotopes in ice cores.


Sign in / Sign up

Export Citation Format

Share Document