Green biosynthesis of silver nanoparticles decorated on multi-walled carbon nanotubes using the extract of Pistacia atlantica leaves as a recyclable heterogeneous nanocatalyst for degradation of organic dyes in water

Polyhedron ◽  
2019 ◽  
Vol 164 ◽  
pp. 1-6 ◽  
Author(s):  
Yasaman Pourdakheli Hamedani ◽  
Malak Hekmati
NANO ◽  
2015 ◽  
Vol 10 (05) ◽  
pp. 1550065 ◽  
Author(s):  
Hui Huang ◽  
Jingang Yu ◽  
Wei Liu ◽  
Xinyu Jiang

In this study, amino-functionalized multi-walled carbon nanotubes ( MWCNTs - NH 2) were successfully synthesized via an improved method and used for removal of organic dyes in aqueous solution. The synthesized MWCNTs - NH 2 were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscope (SEM), etc. The adsorption capacity and selectivity of MWCNTs - NH 2 for organic dyes was evaluated using rhodamine B ( RhB ), malachite green (MG), methyl orange (MO) and congo red (CR) as models. The selective adsorption toward anionic dyes was found for the MWCNTs - NH 2, and MO was selected as a typical anionic dye to deeply investigate the adsorption kinetics, equilibrium isotherms and thermodynamic parameters of the adsorption process. The adsorption kinetics and equilibrium isotherms data fitted well with the pseudo-second-order kinetic equation and Langmuir isotherm model. The thermodynamics study revealed that the adsorption of MO onto MWCNTs - NH 2 was spontaneous, exothermic and physisorptive in nature. The results indicated that MWCNTs - NH 2 are promising nanomaterials for removal of anionic dyes from industrial wastewater.


Sign in / Sign up

Export Citation Format

Share Document