Supercontraction in Nephila spider dragline silk – Relaxation into equilibrium state

Polymer ◽  
2011 ◽  
Vol 52 (26) ◽  
pp. 6056-6060 ◽  
Author(s):  
Roxana Ene ◽  
Periklis Papadopoulos ◽  
Friedrich Kremer
Evolution ◽  
2006 ◽  
Vol 60 (12) ◽  
pp. 2539 ◽  
Author(s):  
Brook O. Swanson ◽  
Todd A. Blackledge ◽  
Adam P. Summers ◽  
Cheryl Y. Hayashi

Author(s):  
Lizhong Dong ◽  
Jian Qiao ◽  
Yulong Wu ◽  
Ming Ren ◽  
Yulian Wang ◽  
...  

1999 ◽  
Vol 39 (4) ◽  
pp. 643-653 ◽  
Author(s):  
STEVEN B. WARNER ◽  
MALCOLM POLK ◽  
KARL JACOB

2019 ◽  
Vol 3 (11) ◽  
pp. 2472-2482 ◽  
Author(s):  
Harun Venkatesan ◽  
Jianming Chen ◽  
Haiyang Liu ◽  
Yoonjung Kim ◽  
Sungsoo Na ◽  
...  

Inspired by supercontraction, the recombinant spider dragline silk displayed humidity-responsive shape memory behaviour with impressive recovery stress.


2005 ◽  
Vol 874 ◽  
Author(s):  
Xiaojun He ◽  
Michael S. Ellison ◽  
Jacqueline M. Palmer

AbstractIn-situ Ramanspectra were collected on the N. clavipes spider dragline silk under a tensile deformation rate of 15mm/min. The most prominent features on the spectra were due to those bands near 1100 cm-1, which present as a sensitive probe to structural changes associated with side-chains of silk peptide. A downshift of Raman bands at 1095 cm-1 and 1089 cm-1 was detected with increasing strain. Furthermore, an increase in the intensity of the Raman band at 1062 cm-1 due to the vibration of trans structure without lateral coupling was prominent at certain strain levels. This was interpreted in terms of a morphology transition from the random configuration to the trans conformation modulated by the reorganization of the hydrogen bonding among the side-chain.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1214-1215
Author(s):  
R. Valluzzi ◽  
S. Szela ◽  
D. Kirschner ◽  
D. Kaplan

Recombinant DNA techniques were used to prepare a protein modeled after the consensus sequence of Nephila clavipesspider dragline silk, incorporating methionine residues to serve as redox “triggers”. In addition a water-soluble 27 residue peptide model of the dragline silk consensus amorphous sequence, representing a single amorphous block in the protein sequence, was prepared and characterized to gain additional insight into the behavior of the amorphous phase. X-ray diffraction, electron diffraction, transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the ability of the recombinant protein to form (β-sheet crystals and the effect of the oxidation state of the redox trigger on crystallinity and noncrystalline order in the sample. The formation of intractable β-sheet crystallites is a major cause of insolubility in proteins that can form this type of secondary structure. Changes in crystallinity were observed when triggered/reduced (insoluble) and untriggered/oxidized (soluble) protein samples were compared.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1510
Author(s):  
Fernando Fraternali ◽  
Nicola Stehling ◽  
Ada Amendola ◽  
Bryan Andres Tiban Anrango ◽  
Chris Holland ◽  
...  

This work establishes a tensegrity model of spider dragline silk. Tensegrity systems are ubiquitous in nature, being able to capture the mechanics of biological shapes through simple and effective modes of deformation via extension and contraction. Guided by quantitative microstructural characterization via air plasma etching and low voltage scanning electron microscopy, we report that this model is able to capture experimentally observed phenomena such as the Poisson effect, tensile stress-strain response, and fibre toughness. This is achieved by accounting for spider silks’ hierarchical organization into microfibrils with radially variable properties. Each fibril is described as a chain of polypeptide tensegrity units formed by crystalline granules operating under compression, which are connected to each other by amorphous links acting under tension. Our results demonstrate, for the first time, that a radial variability in the ductility of tensegrity chains is responsible for high fibre toughness, a defining and desirable feature of spider silk. Based on this model, a discussion about the use of graded tensegrity structures for the optimal design of next-generation biomimetic fibres is presented.


Sign in / Sign up

Export Citation Format

Share Document