Microencapsulation of quinoline and cerium based inhibitors for smart coating application: Anti-corrosion, morphology and adhesion study

2019 ◽  
Vol 137 ◽  
pp. 105339 ◽  
Author(s):  
H. Eivaz Mohammadloo ◽  
S.M. Mirabedini ◽  
H. Pezeshk-Fallah
2017 ◽  
Vol 111 ◽  
pp. 175-185 ◽  
Author(s):  
Khairina Azmi Zahidah ◽  
Saeid Kakooei ◽  
Mokhtar Che Ismail ◽  
Pandian Bothi Raja

2020 ◽  
pp. 68-72
Author(s):  
S.N. Polyanskiy ◽  
S.V. Butakov ◽  
I.S. Olkov ◽  
V.A. Aleksandrov

The effectiveness of using jet-abrasive machining of aircraft engine parts is shown. The results of this treatment are shown in order to prepare surfaces for coating application and repair. Keywords: surface, jet-abrasive machining, abrasive, roughness, motor blade, coating. [email protected]


2020 ◽  
Author(s):  
M. Ismail. Fathima ◽  
K. S. Joseph Wilson ◽  
A. M. S. Arulanantham

2021 ◽  
Vol 11 (5) ◽  
pp. 2128
Author(s):  
Nils Wegner ◽  
Frank Walther

In the field of surgery, bioresorbable magnesium is considered a promising candidate. Its low corrosion resistance, which is disadvantageous for technical application, is advantageous for surgery since the implant fully degrades in the presence of the water-based body fluids, and after a defined time the regenerating bone takes over its function again. Therefore, knowledge of the corrosion behavior over several months is essential. For this reason, an in vitro short-time testing method is developed to accelerate the corrosion progress by galvanostatic anodic polarization without influencing the macroscopic corrosion morphology. The initial corrosion rate of the magnesium alloy WE43 is calculated by detection of the hydrogen volume produced in an immersion test. In a corresponding experimental setup, a galvanostatic anodic polarization is applied with a three-electrode system. The application range for the polarization is determined based on the corrosion current density from potentiodynamic polarization. To correlate the initial corrosion rate, and accelerated dissolution rate, the corrosion morphologies of both test strategies are characterized by microscopy images, as well as energy dispersive X-ray spectroscopy and Fourier-transform infrared spectroscopy. The results demonstrate that the dissolution rate can be increased in the order of decades with the limitation of a changed corrosion morphology with increasing polarization. With this approach, it is possible to characterize and exclude new unsuitable magnesium alloys in a time-efficient manner before they are used in subsequent preclinical studies.


1975 ◽  
Vol 6 (2) ◽  
pp. 257-264 ◽  
Author(s):  
D. W. McKee ◽  
M. McConnell ◽  
R. B. Bolon ◽  
G. Romeo

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 516
Author(s):  
Roghieh Sakooei-Vayghan ◽  
Seyed Hadi Peighambardoust ◽  
Rubén Domínguez ◽  
Mirian Pateiro ◽  
José M. Lorenzo

The effect of different composite coatings on quality of semi-moist apricot cubes mixed with cornflakes was investigated during 180 days of storage. The apricot cubes were osmotically dehydrated (OD) and coated before hot-air drying (HAD) at 60 °C. Chitosan-bees wax (CBW) and whey protein isolate-bees wax-oleic acid (WPI-BW-OA) coatings were applied after HAD and the samples were added to cornflakes. Application of OD and pectin-ascorbic acid (Pec-AA) coating (prior to HAD) and WPI-BW-OA coating (after HAD) led to significant retention of total phenol compounds, β-carotene and antioxidant activity in apricot cubes compared to uncoated and CBW-coated samples. WPI-BW-OA-coated samples gave significantly higher L* values (lighter color) and b* values (more creamy or yellowish color) and lower a* values (less reddish color) and browning values than control followed by CBW-coated apricots at any time of storage (p < 0.05). The rate of apricot moisture loss and cornflakes moisture gain was higher in uncoated apricot cubes, followed by CBW- and WPI-BW-OA-coated samples. Application of WPI-BW-OA coating was effective in retaining the crispness measured by lower firmness (Fmax) values in cornflakes upon storage. Based on the obtained results, WPI-BW-OA coating allowed effectively preserving the quality characteristics of semi-moist apricot cubes and cornflakes components in the mixed state.


2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Trinh Xuan Anh ◽  
Duong Thanh Tung ◽  
Do Quy Nhan ◽  
Tran Vinh Hoang ◽  
Do Quang Trung ◽  
...  

AbstractAntimony-doped tin oxide (ATO) nanoparticles (NPs) (Sb-doped content 3%, 10%, and 15%) were synthesized by the (2 l autoclave, medium-scale) solvothermal method followed by sintering at various temperatures (500°C, 800°C, 900°C and 1000°C) so they would crystallize. The particle size increased from several to tens of nanometers with the increase of sintered temperature from 500°C to 1000°C, sharply from 800°C to 1000 °C; ~30 g of final product was received for each experiment. More interestingly, the crystallinity of the as-synthesized ATO was also increased with the increasing Sb doped content from 3% to 15%. The ATO NPs were coated onto glass substrates and then sintered at 500°C, which effectively prevented transmittance of infrared (IR) wavelengths (>800 nm) with 10% wt Sb-doped content, which is useful for thermal insulated glass coating application.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 364
Author(s):  
Hao Wang ◽  
Jun Xiao ◽  
Hui Wang ◽  
Yong Chen ◽  
Xing Yin ◽  
...  

Liquid metal fast reactors were considered to be the most promising solution to meet the enormous energy demand in the future. However, corrosion phenomenon caused by the liquid metal, especially in high-temperature lead-bismuth coolant, has greatly hindered the commercialization of the advanced Generation-IV nuclear system. This review discussed current research on the corrosion resistance of structural materials (such as EP823, T91, ODS, and authentic steels) in high-temperature liquid metal served as reactor coolants. The current corrosion resistance evaluation has proved that even for the excellent performance of EP823, the structural material selected in pressurized water reactor is not the ideal material for operation in the high-temperature lead-bismuth eutectic (LBE). Furthermore, the latest coating technologies that are expected to be applied to cladding materials for coolant system were extensively discussed, including Al-containing coatings, ceramic coatings, oxide coatings, amorphous coatings and high-entropy alloy coatings. The detailed comparison summarized the corrosion morphology and corrosion products of various coatings in LBE. This review not only provided a systematic understanding of the corrosion phenomena, but also demonstrated that coating technology is an effective method to solve the corrosion issues of the advanced next-generation reactors.


Sign in / Sign up

Export Citation Format

Share Document