scholarly journals Responses of ‘Honeycrisp’ Apples to Short-term Controlled Atmosphere Storage Established During Temperature Conditioning

HortScience ◽  
2019 ◽  
Vol 54 (9) ◽  
pp. 1532-1539 ◽  
Author(s):  
Corina Serban ◽  
Lee Kalcsits ◽  
Jennifer DeEll ◽  
James P. Mattheis

‘Honeycrisp’ apples are susceptible to bitter pit, a physiological disorder that impacts peel and adjacent cortex tissue. ‘Honeycrisp’ is also susceptible to chilling injury (CI) that can be prevented by holding fruit at 10 to 20 °C after harvest for up to 7 days. This temperature conditioning period reduces CI risk but can enhance bitter pit development. Previous research demonstrated a controlled atmosphere (CA) established during conditioning can reduce ‘Honeycrisp’ bitter pit development without inducing other physiological disorders. The objective of this research was to evaluate the duration of CA needed to reduce bitter pit development. Experiments were conducted in 2014, 2016, and 2017 with fruit obtained from commercial orchards in Washington State and, in 2017 only, Ontario, Canada. Half the fruit were treated with 42 µmol·L−1 1-methycyclopropene (1-MCP) for 24 hours at 10 °C immediately following harvest. The untreated fruit were held at the same temperature (10 °C) in a different cold room. Following 1-MCP treatment, all fruit were conditioned at 10 °C for an additional 6 days, then fruit was cooled to 2.8 °C. During conditioning, fruit were held in air or CA (2.5 kPa O2, 0.5 kPa CO2) established 1 day after harvest, for 1 to 8 weeks, then in air. All fruit were removed from cold storage after 4 months and then held 7 days at 20 °C. Fruit from most orchards/years stored in CA developed less bitter pit compared with fruit stored continuously in air. CA during conditioning also reduced poststorage peel greasiness but CA for 2 weeks or longer enhanced cortex cavity development in some orchard lots. Treatment with 1-MCP did not reduce bitter pit but enhanced development of peel leather blotch and core browning for some orchards/years. 1-MCP–treated fruit slowed the loss of soluble solids content, titratable acidity, and reduced internal ethylene concentration. Results suggest the potential for postharvest management of bitter pit development in ‘Honeycrisp’ apples by CA established during conditioning with minimal development of other postharvest disorders.

HortScience ◽  
2017 ◽  
Vol 52 (1) ◽  
pp. 132-137 ◽  
Author(s):  
James P. Mattheis ◽  
David R. Rudell ◽  
Ines Hanrahan

‘Honeycrisp’ apples are susceptible to develop the physiological disorder bitter pit. This disorder typically develops during storage, but preharvest lesion can also develop. ‘Honeycrisp’ is also chilling sensitive, and fruit is typically held at 10–20 °C after harvest for up to 7 days to reduce development of chilling injury (CI) during subsequent cold storage. This temperature conditioning period followed by a lower storage temperature (2–4 °C) reduces CI risk but can exacerbate bitter pit development. Bitter pit development can be impacted in other apple cultivars by the use of controlled atmosphere (CA) storage and/or 1-methylcyclopropene (1-MCP). Studies were conducted to evaluate efficacy of CA and/or 1-MCP to manage ‘Honeycrisp’ bitter pit development. Apples from multiple lots, obtained at commercial harvest, were held at 10 °C for 7 days and then cooled to 3 °C. Half the fruit was exposed to 42 μmol·L−1 1-MCP the day of receipt while held at 10 °C. Fruit were stored in air or CA (3 kPa O2, 0.5 kPa CO2 for 2 days, then 1.5 kPa O2, 0.5 kPa CO2) established after 1 day at 10 °C or after 7 days at 10 °C plus 2 days at 3 °C. Fruit treated with 1-MCP and/or stored in CA developed less bitter pit compared with untreated fruit stored in air, and bitter pit incidence was lowest for 1-MCP-treated fruit with CA established during conditioning. Development of diffuse flesh browning (DFB) and cavities, reported to occur during ‘Honeycrisp’ CA storage, was observed in some lots. Incidence of these disorders was not enhanced by establishing CA 2 days compared with 9 days after harvest. 1-MCP and CA slowed peel color change, loss of soluble solids content (SSC) and titratable acidity (TA), and reduced ethylene production and respiration rate. The results indicate potential for the postharvest management of bitter pit development in ‘Honeycrisp’ apple through use of 1-MCP and/or CA storage.


HortScience ◽  
2012 ◽  
Vol 47 (7) ◽  
pp. 886-892 ◽  
Author(s):  
Christopher B. Watkins ◽  
Jacqueline F. Nock

‘Honeycrisp’ is an apple [Malus xsylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] that can be stored in air for several months, but the flavor becomes bland with prolonged storage. Controlled-atmosphere (CA) storage recommendations have not been made in some growing regions, however, because of the susceptibility of fruit to physiological disorders. In the first year of this study, we stored fruit from six orchards in O2 partial pressures (pO2) of 1.5, 3.0, and 4.5 kPa with 1.5 and 3.0 kPa pCO2. In the second year, we stored fruit from three orchards in three storage regimes (2.0/2.0, 3.0/1.5, 3.0/0.5 kPa O2/kPa CO2) with and without treatment of fruit with 1-methylcyclopropene (1-MCP) at the beginning and end of the conditioning regime (10 °C for 7 days) that is commercially used for ‘Honeycrisp’. CA storage had little effect on flesh firmness, soluble solids concentration (SSC), and titratable acidity (TA) over the range of pO2 and pCO2 tested. Greasiness was generally lower in fruit stored in lower pO2 and higher pCO2. Susceptibility of fruit to core browning and senescent breakdown varied between years, but a high incidence of internal CO2 injury in fruit from some orchards occurred in both years. 1-MCP treatment decreased internal ethylene concentration (IEC) and sometimes maintained TA but had little effect on firmness and SSC. Senescent breakdown and core browning incidence were reduced by 1-MCP treatment where orchard susceptibility to these disorders was high. However, 1-MCP treatment sometimes increased internal CO2 injury, especially if treatment occurred at the beginning of the conditioning period. CA storage cannot be recommended for storage of New York-grown ‘Honeycrisp’ apples until management of CO2 injury can be assured.


2014 ◽  
Vol 94 (8) ◽  
pp. 1427-1439 ◽  
Author(s):  
Kareen Stanich ◽  
Margaret A. Cliff ◽  
Cheryl R. Hampson ◽  
Peter M.A. Toivonen

Stanich, K., Cliff, M. A., Hampson, C. R. and Toivonen, P. M. A. 2014. Shelf-life and sensory assessments reveal the effects of storage treatments with 1-methylcyclopropene on new and established apples. Can. J. Plant Sci. 94: 1427–1439. This research used shelf-life and sensory assessments to explore the influence of 1-methylcyclopropene (1-MCP) on four apples (Aurora, Fuji, Nicola™, Salish™). Maturity (internal ethylene concentration, starch clearing index), quality (soluble solids, titratable acidity, firmness) and sensory determinations were conducted on fruit that had undergone air (AIR) or controlled atmosphere (CA) storage treatments with and without 1-MCP. Trained panelists evaluated apples, along with industry standards (Gala, McIntosh and either Fuji or Ambrosia), for eight attributes (crispness, hardness, juiciness, skin toughness, sweetness, tartness, sweet–tart balance and flavour). Data were analyzed using analysis of variance and principal component analyses (PCA) to compare the treatment and cultivar responses. Cultivars responded very differently to CA and 1-MCP. Fruit from AIR with 1-MCP were very similar to CA fruit without 1-MCP; further improvements were not observed when 1-MCP was applied to CA fruit. PCA bi-plots of the shelf-life and sensory assessments revealed that treated Salish™ fruits were more similar to one another than to cultivars from other treatments. This work successfully documented the unique changes associated with the use of 1-MCP on new and established apple cultivars. It will assist industry in applying appropriate storage practices for new and established apple cultivars.


HortScience ◽  
2019 ◽  
Vol 54 (6) ◽  
pp. 1061-1066 ◽  
Author(s):  
Harwinder Singh Sidhu ◽  
Juan Carlos Díaz-Pérez ◽  
Daniel MacLean

Controlled atmosphere (CA) storage has been observed to prolong the shelf life of fresh produce. The objective of this study was to determine whether CA storage performed better than regular air (RA) storage in maintaining fruit quality of six pomegranate (Punica granatum L.) cultivars grown in the state of Georgia. Pomegranate fruit produced in Ty Ty, GA in 2010 and 2011 were stored in CA [5% CO2 + 3% O2, 5 °C, 90% to 95% relative humidity (RH)] or RA (5 °C, 90% to 95% RH) for 3 months. Pomegranate whole fruit and juice were evaluated for various physical and chemical attributes at the end of storage. Fruit differed by cultivar for rind smoothness, fruit cracking, disease incidence, and chilling injury (CI). Fruit stored in CA had a smoother and less shriveled rind, lower CI, fewer disease severity symptoms, and thus better quality than fruit stored in RA. Fruit rind color, total soluble solids (TSS), titratable acidity (TA), and anthocyanin content in fruit juice were unaffected by storage method. The results showed that pomegranate fruit quality was better sustained under CA compared with RA storage.


HortScience ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 910-915 ◽  
Author(s):  
Rachel Leisso ◽  
Ines Hanrahan ◽  
Jim Mattheis

‘Honeycrisp’ apple is susceptible to the postharvest chilling disorder soft scald that renders fruit unmarketable. Reducing or preventing this disorder is an important component of ‘Honeycrisp’ postharvest management. In commercial settings, advanced fruit maturity and orchard history contribute to an estimation of soft scald susceptibility, but additional at-harvest information indicative of soft scald risk would enable better management decisions. In this study, we obtained fruit from commercial orchards for 3 successive years, and assessed field growing degree days (GDD), field chilling hours (CH), and fruit quality metrics at harvest, followed by soft scald incidence assessment at 12 weeks of cold storage. The analyses indicated starch index, soluble solids content (SSC), internal ethylene concentration, titratable acidity (TA), peel background color, firmness, GDD, or CH do not reliably indicate fruit susceptibility to soft scald. However, SSC and TA were elevated in fruit that later developed soft scald, and a higher number of GDD also sometimes preceded soft scald, which is consistent with advanced fruit maturity that can enhance soft scald risk. Overall, results suggest that other tools may be required to accurately predict postharvest soft scald on a quality control laboratory scale. The statistical analyses applied to the present study would have utility for assessing other soft scald prediction tools or markers.


HortScience ◽  
2007 ◽  
Vol 42 (3) ◽  
pp. 605-610 ◽  
Author(s):  
Elena de Castro ◽  
William V. Biasi ◽  
Elizabeth J. Mitcham

Apple [Malus ×sylvestris (L.) Mill. var. domestica (Borkh.) Mansf. ‘Cripps Pink’] fruit were harvested yearly, at two or three maturity stages, from the same California orchard in 2002 through 2005. Fruit firmness, soluble solids, titratable acidity, background color, and percent blush were correlated with the starch pattern index at harvest. Fruit from each harvest were stored at 0.5 ºC in air or in a controlled atmosphere (CA) with 1.5 or 2 KPa O2 in combination with 1, 3, and 5 KPa CO2. Subsets of fruit were treated with 1 μL·L−1 1-methylcyclopropane for 24 hours at 0 ºC or 2200 μL·L−1 diphenylamine (DPA) for 5 minutes. Ethylene production was measured for 30 days after harvest. Ethylene concentration in the storage atmosphere was also monitored during storage. Fruit quality was evaluated after storage plus 5 days of ripening at 20 ºC. Fruit in a CA with 1 or 3 KPa CO2 maintained firmness and green background color, and produced less ethylene during ripening at 20 ºC than fruit stored in a CA with 5 KPa CO2; however, quality of all CA-stored fruit was better than air-stored fruit. Flesh browning developed only in CA storage, appearing by 2 months and not increasing in incidence with further storage periods. 1-Methylcyclopropane conserved fruit quality in air as well as CA during 4 months of storage, and DPA-treated fruit were firmer after CA storage, but similar after air storage, compared with untreated fruit. Diphenylamine did not control a stem-end scald disorder, which increased with time in storage and affected more than 80% of the fruit after 6 months of air storage.


2021 ◽  
pp. 108201322110320
Author(s):  
Mariya Batool ◽  
Omar Bashir ◽  
Tawheed Amin ◽  
Sajad Mohd Wani ◽  
FA Masoodi ◽  
...  

This study aimed at investigating the influence of different postharvest treatments with oxalic acid (OA) and salicylic acid (SA) on quality attributes and postharvest shelf life of temperate grown apricot varieties stored under controlled atmosphere (CA) storage conditions. After each treatment was given, the samples were stored in CA store maintained at a temperature of 0 °C, 90 ± 5% relative humidity, 5% oxygen and 15% carbon dioxide for 30 days. Results indicated that both OA and SA treatments significantly (p ≤ 0.05) retained total soluble solids, titratable acidity, color profile, ascorbic acid content and total phenolic content of apricot varieties and had a positive effect on antioxidant activity and texture of samples compared to control. However, carotenoid content was found to be higher in control. Both the treatments reduced chilling injury index, weight loss and decay percentage of samples. Moreover, it was found that SA treatment was the most effective treatment in maintaining visual color of apricots while OA maintained fruit firmness and effectively decreased the decay percentage and chilling injury index of apricot varieties. In conclusion, it was found that both OA and SA have the potential to extend storage life of apricots and maintain quality attributes of the crop during CA storage.


2010 ◽  
Vol 16 (4) ◽  
pp. 343-350 ◽  
Author(s):  
M. Guerra ◽  
P.A. Casquero

Two strategies, summer pruning and postharvest Ca treatment, were studied in apple (Malus domestica Borkh) cv. ‘Reinette du Canada’ in order to analyze its effect on the fruit quality during storage. Summer pruning and Ca treatment reduced external and internal bitter-pits; so after 180 days of storage, both treatments decreased external bitter-pit by 10.0% and 16.7%, respectively. Summer pruning influenced color, firmness, total soluble solids and titratable acidity (TA) of fruit during storage, whereas Ca treatment only affected firmness and TA. Fruit from pruned trees had significant lower K and Mg than those from unpruned trees and Ca treatment increased Ca content. Orchard management, by means of summer pruning, combined with Ca postharvest application would be useful to prevent losses due to bitter-pit during storage in commercial orchards. However, in organic orchards, summer pruning would be the ecological alternative to decrease bitter-pit incidence during storage in high quality apple cv. ‘Reinette du Canada’. K/Ca ratio, on the peel at harvest, turned out to be the best parameter to correlate with external and internal bitter-pits during storage; so this ratio would be useful to predict bitter-pit on long-term storage.


2016 ◽  
Vol 29 (3) ◽  
pp. 629-641 ◽  
Author(s):  
JOÃO ALISON ALVES OLIVEIRA ◽  
LUIZ CARLOS CHAMHUM SALOMÃO ◽  
DALMO LOPES DE SIQUEIRA ◽  
PAULO ROBERTO CECON

ABSTRACT The objective of this work was to evaluate the tolerance of fruits of different banana cultivars to low temperature storages. Fruits of the cultivars Nanicão (AAA), Prata (AAB), Vitória (AAAB), Maçã (AAB) and Caipira (AAA) were used. Clusters of three fruits were kept in cold storage for 7, 14 and 21 days, with average temperature of 10.53±0.37°C and relative humidity of 85%. Subsequently, the clusters were transferred to temperatures of 22±0.39°C and evaluated for 16 days. The fruits of all cultivars remained green after 21 days of storage at 10.53±0.37°C. Fruits of the cultivar Nanicão did not completely ripened after transferred to the 22°C storage, when stored for 7 days at low temperature. These fruits were firmer, with green peel and low soluble solids and titratable acidity. The fruits of all cultivars complete the ripening when transferred to room temperature after 21 days of cold storage. Chilling injuries increased with cold storage time in all cultivars. The cultivars Nanicão, Caipira and Maçã had more symptoms of chilling injury, while Prata and Vitória were more tolerant to the cold storage (10.53°C) for up to 21 days, showing normal ripening after transferred to the 22±0.39°C storage.


2013 ◽  
Vol 52 (1-2) ◽  
pp. 85-94 ◽  
Author(s):  
Paweł Wójcik

The aim of this study was to examine effect of frequency of calcium chloride (CaCl<sub>2</sub>) sprays on 'Jonagold' apple (<em>Malus domestica</em> Borkh.) quality. The experiment was carried out in 1996-1998 in the Experimental Orchard of the Research Institute of Pomology and Floriculture in Skierniewice. Apple trees were grafied on M.26 rootstock and planted in 1992 at a distance of 4 x 2 m on a sandy loam soil with high available phosphorus, potassium and magnesium contents. Four experimental treatments were applied: (i) three sprays with CaCl<sub>2</sub> solutions at 2, 10 and 18 weeks after full bloom, (ii) six sprays with CaCl<sub>2</sub> at 2, 6, 10, 14, 16 and 18 weeks after full bloom, (iii) nine sprays with CaCl<sub>2</sub> at 2, 4, 6, 8, 10, 12, 14, 16 and 18 weeks after full bloom and (iv) control plot - trees unsprayed with CaCl<sub>2</sub>. The results showed that fruit Ca concentration increased with the number of CaCl<sub>2</sub> sprays during the growing season. Apples nine-times sprayed with CaCl<sub>2</sub> solutions were smaller, less mature at harvest and after storage, had lower titratable acidity and soluble solids contents after storage and were less sensitive to bitter pit, internal breakdown and Gloeosporium-rot compared to other treatments; however these effects were influenced by the growing season. Six CaCl<sub>2</sub> sprays only in one year of the study increased fruit firmness after storage, fruit resistance to bitter pit and internal breakdown. Three CaCl<sub>2</sub> sprays decreased bitter pit incidence; however this effect was found only in one investigated year.


Sign in / Sign up

Export Citation Format

Share Document