scholarly journals Surface orientation tensor to predict preferred contact orientation and characterise the form of individual particles

Author(s):  
Ákos Orosz ◽  
Vasileios Angelidakis ◽  
Katalin Bagi
Author(s):  
Gregory L. Finch ◽  
Richard G. Cuddihy

The elemental composition of individual particles is commonly measured by using energydispersive spectroscopic microanalysis (EDS) of samples excited with electron beam irradiation. Similarly, several investigators have characterized particles by using external monochromatic X-irradiation rather than electrons. However, there is little available information describing measurements of particulate characteristic X rays produced not from external sources of radiation, but rather from internal radiation contained within the particle itself. Here, we describe the low-energy (< 20 KeV) characteristic X-ray spectra produced by internal radiation self-excitation of two general types of particulate samples; individual radioactive particles produced during the Chernobyl nuclear reactor accident and radioactive fused aluminosilicate particles (FAP). In addition, we compare these spectra with those generated by conventional EDS.Approximately thirty radioactive particle samples from the Chernobyl accident were on a sample of wood that was near the reactor when the accident occurred. Individual particles still on the wood were microdissected from the bulk matrix after bulk autoradiography.


Author(s):  
JR Fryer ◽  
Z Huang ◽  
D Stirling ◽  
G. Webb

Platinum dispersed on γ-alumina is used as a reforming catalyst to convert linear hydrocarbons to cyclic aromatic products. To improve selectivity and lifetime of the catalyst, other elements are included, and we have studied the distributions of Pt/Re, and Pt/Sn, bimetallic systems on the support both before and after use in octane reforming. Often, one or both of the components are not resolvable by HREM or microanalysis as individual particles because of small size and lack of contrast on the alumina, and divergent beam microanalysis has been used to establish the presence and relationship between the two elements.In the majority of catalysts the platinum is in the form of small panicles, some of which are large enough to be resolvable in the microscope. The ABT002B microscope with Link windowless Pentafet detector, used in this work, was able to obtain a resolvable signal from particles of 2nm diameter upwards. When the beam was concentrated on to such a particle the signal was at a maximum, and as the beam diameter was diverged - at the same total beam intensity and dead time - the signal decreased as shown in Figure 1.


2011 ◽  
Vol 34 (9) ◽  
pp. 1726-1731
Author(s):  
Xiao-Fang SHAO ◽  
Shu-Hua LI
Keyword(s):  

Author(s):  
M. L. Scriabin ◽  
A. I. Chuprakov

The paper deals with the classification of defects of castings obtained by electric arc smelting. Of particular interest to researchers is the rock-like and naphthalene fracture, but there is still no clear mechanism explaining its origin. A stone-like fracture is characterized by a clearly defined uniform surface over which the fracture occurs. Grain boundaries are partially soluble in the austenite phase, consisting of fine individual particles or films formed from molten eutectics. It is also worth noting that in most cases, the stone-like fracture is observed at the grain boundaries.


2008 ◽  
Vol 112 (13) ◽  
pp. 5029-5035 ◽  
Author(s):  
Mesfin Tsige ◽  
Gary S. Grest

Author(s):  
Denisa Olekšáková ◽  
Peter Kollár ◽  
Miloš Jakubčin ◽  
Ján Füzer ◽  
Martin Tkáč ◽  
...  

AbstractThis submitted paper presents the detailed description of the energy loss separation for dc and ac low-frequency magnetic fields of NiFeMo (supermalloy) compacted powder prepared by innovative method of smoothing the surfaces of individual particles. The positive impact of mechanical treatment method on domain wall displacement is explained on the basis of Landgraf approach for dc loss analysis, and the effective dimension for eddy current in ac magnetic field is explained according to Bertotti approach for core loss analysis.


2001 ◽  
Vol 32 ◽  
pp. 683-684
Author(s):  
M. EBERT ◽  
S. WEINBRUCH ◽  
A. RAUSCH ◽  
G. GORZAWSKI ◽  
H. WEX ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1460
Author(s):  
Khadega A. Al-Maqdi ◽  
Muhammad Bilal ◽  
Ahmed Alzamly ◽  
Hafiz M. N. Iqbal ◽  
Iltaf Shah ◽  
...  

As a result of their unique structural and multifunctional characteristics, organic–inorganic hybrid nanoflowers (hNFs), a newly developed class of flower-like, well-structured and well-oriented materials has gained significant attention. The structural attributes along with the surface-engineered functional entities of hNFs, e.g., their size, shape, surface orientation, structural integrity, stability under reactive environments, enzyme stabilizing capability, and organic–inorganic ratio, all significantly contribute to and determine their applications. Although hNFs are still in their infancy and in the early stage of robust development, the recent hike in biotechnology at large and nanotechnology in particular is making hNFs a versatile platform for constructing enzyme-loaded/immobilized structures for different applications. For instance, detection- and sensing-based applications, environmental- and sustainability-based applications, and biocatalytic and biotransformation applications are of supreme interest. Considering the above points, herein we reviewed current advances in multifunctional hNFs, with particular emphasis on (1) critical factors, (2) different metal/non-metal-based synthesizing processes (i.e., (i) copper-based hNFs, (ii) calcium-based hNFs, (iii) manganese-based hNFs, (iv) zinc-based hNFs, (v) cobalt-based hNFs, (vi) iron-based hNFs, (vii) multi-metal-based hNFs, and (viii) non-metal-based hNFs), and (3) their applications. Moreover, the interfacial mechanism involved in hNF development is also discussed considering the following three critical points: (1) the combination of metal ions and organic matter, (2) petal formation, and (3) the generation of hNFs. In summary, the literature given herein could be used to engineer hNFs for multipurpose applications in the biosensing, biocatalysis, and other environmental sectors.


2021 ◽  
Vol 7 (20) ◽  
pp. eabe3392
Author(s):  
Erin G. Teich ◽  
K. Lawrence Galloway ◽  
Paulo E. Arratia ◽  
Danielle S. Bassett

The nature of yield in amorphous materials under stress has yet to be fully elucidated. In particular, understanding how microscopic rearrangement gives rise to macroscopic structural and rheological signatures in disordered systems is vital for the prediction and characterization of yield and the study of how memory is stored in disordered materials. Here, we investigate the evolution of local structural homogeneity on an individual particle level in amorphous jammed two-dimensional (athermal) systems under oscillatory shear and relate this evolution to rearrangement, memory, and macroscale rheological measurements. We define the structural metric crystalline shielding, and show that it is predictive of rearrangement propensity and structural volatility of individual particles under shear. We use this metric to identify localized regions of the system in which the material’s memory of its preparation is preserved. Our results contribute to a growing understanding of how local structure relates to dynamic response and memory in disordered systems.


Sign in / Sign up

Export Citation Format

Share Document