Air curtain dust-collecting technology: Investigation of factors affecting dust control performance of air curtains in the developed transshipment system for soybean clearance based on numerical simulation

Author(s):  
Li Xiaochuan ◽  
Zhang Mingrui ◽  
Jiang Yefeng ◽  
Wang Li ◽  
Zhao Xinli ◽  
...  
2012 ◽  
Vol 241-244 ◽  
pp. 1285-1292
Author(s):  
Gang Zhou ◽  
Sen Cao ◽  
De Ming Wang ◽  
Wei Min Cheng ◽  
Wen Nie

Vortex air curtain of plane wall fan drum can control the diffusion of air stripping dust effectively. In order to solve the high-concentration dust problem in fully mechanized excavation face, formation mechanism of vortex air curtain was analyzed. According to fluid mechanical control equations of gas phase flow, mathematical model was established to solve air migration law of vortex air curtain in fully mechanized excavation face. By using Simple algorithm based on collocated grid and fluent software, numerical simulation of air spatial migration law of closed-end dust control in fully mechanized excavation face was carried out. The simulation results show that vortex air curtain dust control system can form dust control fan drum along driving head to the front of the roadheader driver. According to the simulation results and actual conditions of working face field, vortex air curtain suction dust control system consisted of plane wall fan drum and exhausted dust purification device in fully mechanized excavation face was designed, and after it was applied in fully mechanized excavation face, the dust concentration decreased effectively in the working face field.


2020 ◽  
Vol 362 ◽  
pp. 238-245
Author(s):  
Di Xiao ◽  
Xiaochuan Li ◽  
Zhenchang Fang ◽  
Weidong Yan ◽  
Yefeng Jiang ◽  
...  

2011 ◽  
Vol 317-319 ◽  
pp. 2073-2078 ◽  
Author(s):  
Jian Zhuo Zhang ◽  
Tian Zi Zhu ◽  
Meng Gao ◽  
Kang Kang Li

A new type of dust-collecting and dedusting system with air curtain was developed to solve the problems of the dust-prevention in mine tunnel. The speed of air-curtain fan, the structure size and pressure of dedusting duct are the critical factors, which effect dust control of the whole system. In order to achieve optimal efficiency of dust control, the simulation was conducted with FLUENT(computational fluid dynamics software) to analyse the air-curtain fan surface path lines and dust particle tracks at different wind speeds of air curtain fan, dedusting duct diameters and outlet pressures. We obtained the law of fan speed, the diameter and outlet pressure of dedusting duct, which effect the whole system on dedusting. This law would play a guiding role on the structural optimization of dust-collecting and dedusting system with air curtain.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Bin Wang ◽  
Gensheng Li ◽  
Zhongwei Huang ◽  
Tianqi Ma ◽  
Dongbo Zheng ◽  
...  

Radial jet drilling (RJD) is an efficient approach for improving the productivity of wells in low permeability, marginal and coal-bed methane (CBM) reservoirs at a very low cost. It uses high-pressure water jet to drill lateral holes from a vertical wellbore. The length of the lateral holes is greatly influenced by the frictional resistance in the hole deflector. However, the hole deflector frictional resistance and structure design have not been well studied. This work fills that gap. Frictional resistances were measured in a full-scale experiment and calculated by numerical simulation. The structure of the hole deflector was parameterized and a geometric model was developed to design the hole deflector track. An empirical model was then established to predict the frictional resistance as a function of the hole deflector structure parameters and an optimization method for designing the hole deflector was proposed. Finally, four types of hole deflectors were optimized using this method. The results show good agreement between the numerical simulation and the experimental data. The model error is within 11.6%. The bend radius R and exit angle β are the key factors affecting the performance of the hole deflector. The validation test was conducted for a case hole deflector (5½ in. casing). The measured frictional resistance was decreased from 31.44 N to 23.16 N by 26.34%. The results from this research could serve as a reference for the design of hole deflectors for radial jet drilling.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Kuan Wu ◽  
Shiliang Shi ◽  
Yijie Shi ◽  
Yong Chen

Dust is one of the main pollutants in coal mines, which seriously affects the physical and mental health of workers, as well as the safe production in underground mines. Dual-radial swirl shielding ventilation is a new ventilation method for a fully mechanized excavation face and can effectively reduce the dust concentration in the underground. The dust control effect of dual-radial swirl shielding ventilation is mainly affected by the thickness and integrity of the shielding air curtain, as well as the disturbance of the flow field near the air curtain. By changing the blowing and suction air volume ratio of the air duct, the strength of the radial air curtain can be improved, and the dust control effect of the dual-radial swirl shielding ventilation system can be effectively improved. In order to determine the optimal operating parameters of the dual-radial swirl shielding ventilation system, a numerical simulation method was used to conduct an in-depth study on the blowing and suction air volume ratio of the system. The results showed that when the blowing and suction air volume ratio of the air duct was 1.5, the radial air curtain had the highest strength. Under this condition, the dust concentration at the driver’s position of the roadheader was the lowest, and the dual-radial swirl shielding ventilation system can achieve an ideal dust control effect.


2010 ◽  
Vol 22 (11) ◽  
pp. 2778-2782
Author(s):  
赵越 Zhao Yue ◽  
谢卫平 Xie Weiping ◽  
李洪涛 Li Hongtao ◽  
刘金锋 Liu Jinfeng ◽  
刘宏伟 Liu Hongwei ◽  
...  

2013 ◽  
Vol 749 ◽  
pp. 554-560
Author(s):  
Jing Xie ◽  
Chen Miao ◽  
Zhi Li Gao ◽  
Jian Bing Shi ◽  
Tai Wang

Air curtains are commonly used to cut off air flow between the cold store and hot environment, and reduce heat and mass transfer in order to maintain the low temperature in the cold store. CFD can be used to predict operation rule of air curtain used in the cold store intuitively and modelling is the most important part of numerical simulation of air curtain used in the cold store. In this study, different numerical models including standardmodel (with and without boussinesq approximation) and RSM (with and without boussinesq approximation) were used to simulate the temperature field and air flow field in the cold store and operation rule of air curtain used in the cold store after air curtain opened for 60s. Meanwhile, the actual operation of air curtain used in the cold store was tested and the simulation values were compared with the experimental values. The results showed that the velocity of the central mainstream decayed slowly, but the velocity of both sides of air curtain decayed fast. The optimal model used to predict the temperature field and air flow field in the cold store and operation rule of air curtain used in the cold store was standardmodel with boussinesq approximation, the relative error was within 20%. The optimal model can be used to predict the temperature field and air flow field in the cold store during different times in the future research.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Kaikai Wang ◽  
Zizhao Zhang ◽  
Guobin Tang ◽  
Xiaodong Tan ◽  
Qianli Lv ◽  
...  

Reclaimed soil is the key substrate for land reclamation and ecological restoration in the mine areas. The change of the density of reclaimed soil of the nonmetallic mines in Xinjiang during the land reclamation process was studied in this paper. Firstly, the in situ test method of static load was used to simulate the compaction of reclaimed soil with different thickness of overlying soil by different compaction times of mines reclamation machinery, and field in situ test compaction data were obtained. Then, the numerical simulation method was used to simulate the variation process of displacement and porosity at different depths for different thickness of the reclaimed soil under different compaction conditions. The numerical simulation and the in situ test results verified each other to acquire the compaction process and results of reclaimed soil under different compaction. The results showed that the numerical simulation results were consistent with the in situ test. The reclaimed soil thickness and compaction times were crucial factors affecting the compaction effect of the soil. The difference between the three times compaction and the uncompacted soil was obvious, and the effect of single compaction was weakened with the increase of compaction times. Under the same compaction action, the thicker the soil was, the less obvious the compaction effect would be. In the process of reclamation, the compaction effect of the surface part (at the depth of 10 cm) was visible, and the amount of compression and springback was larger. The research results can provide a reference to the land reclamation of nonmetallic mines in Xinjiang, China.


Sign in / Sign up

Export Citation Format

Share Document