Parameter Optimization and Numerical Simulation of Dust-Collecting and Dedusting System with Air Curtain in Heading Face

2011 ◽  
Vol 317-319 ◽  
pp. 2073-2078 ◽  
Author(s):  
Jian Zhuo Zhang ◽  
Tian Zi Zhu ◽  
Meng Gao ◽  
Kang Kang Li

A new type of dust-collecting and dedusting system with air curtain was developed to solve the problems of the dust-prevention in mine tunnel. The speed of air-curtain fan, the structure size and pressure of dedusting duct are the critical factors, which effect dust control of the whole system. In order to achieve optimal efficiency of dust control, the simulation was conducted with FLUENT(computational fluid dynamics software) to analyse the air-curtain fan surface path lines and dust particle tracks at different wind speeds of air curtain fan, dedusting duct diameters and outlet pressures. We obtained the law of fan speed, the diameter and outlet pressure of dedusting duct, which effect the whole system on dedusting. This law would play a guiding role on the structural optimization of dust-collecting and dedusting system with air curtain.

2012 ◽  
Vol 241-244 ◽  
pp. 1285-1292
Author(s):  
Gang Zhou ◽  
Sen Cao ◽  
De Ming Wang ◽  
Wei Min Cheng ◽  
Wen Nie

Vortex air curtain of plane wall fan drum can control the diffusion of air stripping dust effectively. In order to solve the high-concentration dust problem in fully mechanized excavation face, formation mechanism of vortex air curtain was analyzed. According to fluid mechanical control equations of gas phase flow, mathematical model was established to solve air migration law of vortex air curtain in fully mechanized excavation face. By using Simple algorithm based on collocated grid and fluent software, numerical simulation of air spatial migration law of closed-end dust control in fully mechanized excavation face was carried out. The simulation results show that vortex air curtain dust control system can form dust control fan drum along driving head to the front of the roadheader driver. According to the simulation results and actual conditions of working face field, vortex air curtain suction dust control system consisted of plane wall fan drum and exhausted dust purification device in fully mechanized excavation face was designed, and after it was applied in fully mechanized excavation face, the dust concentration decreased effectively in the working face field.


2012 ◽  
Vol 499 ◽  
pp. 120-125 ◽  
Author(s):  
Zhi Peng Tang ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
Q. Yao

In order to enhance the efficiency of the Savonius rotor, this paper designs a new type of Savonius rotor with a rectifier. By using Computational Fluid Dynamics software to simulate and optimize the various parameters which affect the efficiency of the rotor. The sliding mesh method is applied here. The Cp-λ curves of wind turbine with different structural parameters are obtained after numerical simulation of flow field. On this basis, this paper gets the optimal structural parameters. And the results indicated that this new type of Savonius rotor has great improvement of efficiency compared with the traditional Savonius-type rotor.


2014 ◽  
Vol 945-949 ◽  
pp. 951-955
Author(s):  
Fen Wang ◽  
Zhi Xia He ◽  
Yue Ma ◽  
Chang Si Li

The impinging streams mixer is a new type micromixer. The cavitation phenomenon occurring in the mixers with T-shaped impinging streams (TS), conical impinging streams (CIS), vortex streams(VS) were investigated, respectively. The distribution of flow field in the mixer was simulated and calculated by commercial software Fluent 6.2.1. The results showed that under the same working conditions, a more obvious hydrodynamic cavitation may occur in the CIS type impinging stream than that in the CIS type or the VS type, and the vortex flow lead to an extension of the material residence time in the mixer. The distribution of turbulent kinetic energy and gas holdup were obtained by numerical simulating hydrodynamic cavitation under different entrance pressure conditions. It is showed that when the outlet pressure keeps a constant value, hydrodynamic cavitation can be enhanced by increasing the entrance pressure. The above research can be contributed to the producing of biodiesel and the solving of the key technical problem of oil and alcohol heterogeneous mixing.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 748
Author(s):  
Xiaoyan Bian ◽  
Yao Zhang ◽  
Qibin Zhou ◽  
Ting Cao ◽  
Bengang Wei

Building Integrated Photovoltaic (BIPV) modules are a new type of photovoltaic (PV) modules that are widely used in distributed PV stations on the roof of buildings for power generation. Due to the high installation location, BIPV modules suffer from lightning hazard greatly. In order to evaluate the risk of lightning stroke and consequent damage to BIPV modules, the studies on the lightning attachment characteristics and the lightning energy withstand capability are conducted, respectively, based on numerical and experimental methods in this paper. In the study of lightning attachment characteristics, the numerical simulation results show that it is easier for the charges to concentrate on the upper edge of the BIPV metal frame. Therefore, the electric field strength at the upper edge is enhanced to emit upward leaders and attract the lightning downward leaders. The conclusion is verified through the long-gap discharge experiment in a high voltage lab. From the experimental study of multi-discharge in the lab, it is found that the lightning interception efficiency of the BIPV module is improved by 114% compared with the traditional PV modules. In the study of lightning energy withstand capability, a thermoelectric coupling model is established. With this model, the potential, current and temperature can be calculated in the multi-physical field numerical simulation. The results show that the maximum temperature of the metal frame increases by 16.07 °C when 100 kA lightning current flows through it and does not bring any damage to the PV modules. The numerical results have a good consistency with the experimental study results obtained from the 100 kA impulse current experiment in the lab.


2021 ◽  
Vol 36 (1) ◽  
pp. 67-77
Author(s):  
Yue Wu ◽  
Junkai Huang ◽  
Jiafeng Chen

The long-span ice composite shell structure is a new type of ice and snow structure developed in recent years. The engineering practice of ice composite shell shows that sublimation is one of the important reasons for its damage and even collapse. In this paper, we firstly supplemented the existing H-K equation and obtained the revised ice sublimation equation through indoor evaporative plate experiment considering the influence of admixtures and wind speed. Afterwards, combining the simulations of solar radiation and CFD, the numerical simulation of sublimation distribution on the surface of were realized by programming in Grasshopper platform. During sublimation, the thickness of the ice composite shell decreases by 0.38 mm every 10 days and the sublimation rate on the sunny side was 1.7 times that on the shady side. Finally, the static performance and stability of the sublimated ice composite spherical shell were analyzed. After 70 days of sublimation, the thickness of the ice composite shell structure becomes thinner and uneven, which leads its sensitivity to external load increases.


Author(s):  
Chunhai Guo ◽  
Bin Wang ◽  
Zhenya Kang ◽  
Wenwu Zhang ◽  
Huilong Zheng

Sign in / Sign up

Export Citation Format

Share Document