Comparing control strategies against foot-and-mouth disease: Will vaccination be cost-effective in Denmark?

2013 ◽  
Vol 111 (3-4) ◽  
pp. 206-219 ◽  
Author(s):  
A. Boklund ◽  
T. Halasa ◽  
L.E. Christiansen ◽  
C. Enøe
Author(s):  
Sohini Roy Chowdhury ◽  
Caterina Scoglio ◽  
William H. Hsu

Prediction of epidemics such as Foot and Mouth Disease (FMD) is a global necessity in addressing economic, political and ethical issues faced by the affected countries. In the absence of precise and accurate spatial information regarding disease dynamics, learning- based predictive models can be used to mimic latent spatial parameters so as to predict the spread of epidemics in time. This paper analyzes temporal predictions from four such learning-based models, namely: neural network, autoregressive, Bayesian network, and Monte-Carlo simulation models. The prediction qualities of these models have been validated using FMD incidence reports in Turkey. Additionally, the authors perform simulations of mitigation strategies based on the predictive models to curb the impact of the epidemic. This paper also analyzes the cost-effectiveness of these mitigation strategies to conclude that vaccinations and movement ban strategies are more cost-effective than premise culls before the onset of an epidemic outbreak; however, in the event of existing epidemic outbreaks, premise culling is more effective at controlling FMD.


2009 ◽  
Vol 16 (8) ◽  
pp. 1151-1157 ◽  
Author(s):  
M. P. Alves ◽  
L. Guzylack-Piriou ◽  
V. Juillard ◽  
J.-C. Audonnet ◽  
T. Doel ◽  
...  

ABSTRACT Emergency vaccination as part of the control strategies against foot-and-mouth disease virus (FMDV) has the potential to limit virus spread and reduce large-scale culling. To reduce the time between vaccination and the onset of immunity, immunostimulatory CpG was tested for its capacity to promote early protection against FMDV challenge in pigs. To this end, CpG 2142, an efficient inducer of alpha interferon, was injected intramuscularly. Increased transcription of Mx1, OAS, and IRF-7 was identified as a sensitive measurement of CpG-induced innate immunity, with increased levels detectable to at least 4 days after injection of CpG formulated with Emulsigen. Despite this, CpG combined with an FMD vaccine did not promote protection. Pigs vaccinated 2 days before challenge had disease development, which was at least as acute as that of unvaccinated controls. All pigs vaccinated 7 days before challenge were protected without a noticeable effect of CpG. In summary, our results demonstrate the caution required when translating findings from mouse models to natural hosts of FMDV.


2014 ◽  
Vol 143 (6) ◽  
pp. 1256-1275 ◽  
Author(s):  
S. E. ROCHE ◽  
M. G. GARNER ◽  
R. L. SANSON ◽  
C. COOK ◽  
C. BIRCH ◽  
...  

SUMMARYSimulation models can offer valuable insights into the effectiveness of different control strategies and act as important decision support tools when comparing and evaluating outbreak scenarios and control strategies. An international modelling study was performed to compare a range of vaccination strategies in the control of foot-and-mouth disease (FMD). Modelling groups from five countries (Australia, New Zealand, USA, UK, The Netherlands) participated in the study. Vaccination is increasingly being recognized as a potentially important tool in the control of FMD, although there is considerable uncertainty as to how and when it should be used. We sought to compare model outputs and assess the effectiveness of different vaccination strategies in the control of FMD. Using a standardized outbreak scenario based on data from an FMD exercise in the UK in 2010, the study showed general agreement between respective models in terms of the effectiveness of vaccination. Under the scenario assumptions, all models demonstrated that vaccination with ‘stamping-out’ of infected premises led to a significant reduction in predicted epidemic size and duration compared to the ‘stamping-out’ strategy alone. For all models there were advantages in vaccinating cattle-only rather than all species, using 3-km vaccination rings immediately around infected premises, and starting vaccination earlier in the control programme. This study has shown that certain vaccination strategies are robust even to substantial differences in model configurations. This result should increase end-user confidence in conclusions drawn from model outputs. These results can be used to support and develop effective policies for FMD control.


2004 ◽  
Vol 17 (2) ◽  
pp. 465-493 ◽  
Author(s):  
Marvin J. Grubman ◽  
Barry Baxt

SUMMARY Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease was initially described in the 16th century and was the first animal pathogen identified as a virus. Recent FMD outbreaks in developed countries and their significant economic impact have increased the concern of governments worldwide. This review describes the reemergence of FMD in developed countries that had been disease free for many years and the effect that this has had on disease control strategies. The etiologic agent, FMD virus (FMDV), a member of the Picornaviridae family, is examined in detail at the genetic, structural, and biochemical levels and in terms of its antigenic diversity. The virus replication cycle, including virus-receptor interactions as well as unique aspects of virus translation and shutoff of host macromolecular synthesis, is discussed. This information has been the basis for the development of improved protocols to rapidly identify disease outbreaks, to differentiate vaccinated from infected animals, and to begin to identify and test novel vaccine candidates. Furthermore, this knowledge, coupled with the ability to manipulate FMDV genomes at the molecular level, has provided the framework for examination of disease pathogenesis and the development of a more complete understanding of the virus and host factors involved.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tim R. Capon ◽  
Michael G. Garner ◽  
Sorada Tapsuwan ◽  
Sharon Roche ◽  
Andrew C. Breed ◽  
...  

This study examines the potential for foot-and-mouth disease (FMD) control strategies that incorporate vaccination to manage FMD spread for a range of incursion scenarios across Australia. Stakeholder consultation was used to formulate control strategies and incursion scenarios to ensure relevance to the diverse range of Australian livestock production regions and management systems. The Australian Animal Disease Spread model (AADIS) was used to compare nine control strategies for 13 incursion scenarios, including seven control strategies incorporating vaccination. The control strategies with vaccination differed in terms of their approaches for targeting areas and species. These strategies are compared with two benchmark strategies based on stamping out only. Outbreak size and duration were compared in terms of the total number of infected premises, the duration of the control stage of an FMD outbreak, and the number of vaccinated animals. The three key findings from this analysis are as follows: (1) smaller outbreaks can be effectively managed by stamping out without vaccination, (2) the size and duration of larger outbreaks can be significantly reduced when vaccination is used, and (3) different vaccination strategies produced similar reductions in the size and duration of an outbreak, but the number of animals vaccinated varied. Under current international standards for regaining FMD-free status, vaccinated animals need to be removed from the population at the end of the outbreak to minimize trade impacts. We have shown that selective, targeted vaccination strategies could achieve effective FMD control while significantly reducing the number of animals vaccinated.


Sign in / Sign up

Export Citation Format

Share Document