scholarly journals Spenceria ramalana Trimen total polyphenols modulate the inflammatory response and intestinal flora in DSS-induced ulcerative colitis in C57BL/6 mice

Author(s):  
Min Tan ◽  
Lu Wang ◽  
Kui-kui Guan ◽  
Cong-cong Li ◽  
Chao-xi Chen
AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xingjiang Hu ◽  
Nana Xu ◽  
Xi Yang ◽  
Xi Hu ◽  
Yunliang Zheng ◽  
...  

Abstract Nigella A, also named Sieboldianoside A, has been extracted from many kinds of Traditional Chinese Medicine (TCM), such as Nigella glandulifera, Stauntonia chinensis DC., and the leaves of Acanthopanax sieboldianus. Nigella A exhibited potential analgesic, anti-inflammatory, anti-tumor, and antioxidant activities. However, whether Nigella A could treat ulcerative colitis (UC) is still unknown. As saponins always be regarded as the kinds of ingredients that could regulate immunity and intestinal flora. This research aimed to investigate the therapeutic effect of Nigella A on UC and explore its effect on intestinal flora. We noted that Nigella A and Sulfasalazine (SASP) could significantly improve the signs and symptoms, alleviate colonic pathological injury in DSS-induced mice. The changing of many specific bacterial genus such as Lactobacillus, Porphyromonadaceae, Bacteroides and Escherichia might closely related to the recovery of intestinal inflammatory response. This study initially confirmed the therapeutic effect of Nigella A and SASP on DSS-induced colitis by improving the diversity of intestinal microbial composition. Nigella A has the potential to be developed for the treatment of UC and other disorders related to the imbalance of intestinal flora.


2020 ◽  
Author(s):  
XingJiang Hu ◽  
Nana Xu ◽  
Xi Yang ◽  
Xi Hu ◽  
Yunliang Zheng ◽  
...  

Abstract Nigella A, also named Sieboldianoside A, has been extracted from many kinds of Traditional Chinese Medicine (TCM), such as Nigella glandulifera, Stauntonia chinensis DC., and the leaves of Acanthopanax sieboldianus. Nigella A exhibited potential analgesic, anti-inflammatory, anti-tumor, and antioxidant activities. However, whether Nigella A could treat ulcerative colitis (UC) is still unknown. As saponins always be regarded as the kinds of ingredients that could regulate immunity and intestinal flora. This research aimed to investigate the therapeutic effect of Nigella A on UC and explore its effect on intestinal flora. We noted that Nigella A and Sulfasalazine (SASP) could significantly improve the signs and symptoms, alleviate colonic pathological injury in DSS-induced mice. The changing of many specific bacterial genus such as Lactobacillus, Porphyromonadaceae, Bacteroides and Escherichia might closely related to the recovery of intestinal inflammatory response. This study initially confirmed the therapeutic effect of Nigella A and SASP on DSS-induced colitis by improving the diversity of intestinal microbial composition. Nigella A has the potential to be developed for the treatment of UC and other disorders related to the imbalance of intestinal flora.


2021 ◽  
Author(s):  
Haolong Zhang ◽  
Yan Wang ◽  
Yingchun Su ◽  
Xuedong Fang ◽  
Wenjin Guo

Bilobalide alleviates ulcerative colitis by inhibiting inflammatory response, protecting the intestinal epithelial barrier, and improving the composition of intestinal flora.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S136-S137
Author(s):  
M Loza ◽  
J M Brea ◽  
C Calviño-Suarez ◽  
I Baston-Rey ◽  
R Ferreiro-Iglesias ◽  
...  

Abstract Background Ulcerative colitis (UC) is a chronic, progressive and disabling disease with a complex pathology of unknown aetiology influenced by genetic, environmental and microbiota factors that lead to an immunological and inflammatory response in the colon. Janus Activated Kinase (JAK) family plays a key role in modulating the adaptive and innate inflammatory response. The JAK/STAT pathway involvement in UC has been demonstrated in both animal models and human studies. Thus, overexpressed JAK-3 has been detected in the intestine of patients with UC, suggesting a key role in their pathophysiology and the inhibition of TYK-2 in animal models resulted in an improvement of the disease, which would explain its implication in the inflammatory process. We hypothesise here that there could be an activation of JAK-3 and TYK-2 signalling pathways in UC patients. Thus, we aimed to detect the activation of both signalling pathways by means of western-blot studies in UC patient samples Methods A prospective, observational single-centre study was designed. Inclusion criteria were adult patients with endoscopic active UC (more than Mayo-0) confirmed in a programmed colonoscopy. All patients signed informed consent. Samples were obtained from overstock of routine biopsies in the more severe segment affected of the large bowel. Tissues were homogenised and processed in order to obtain cell lysates by employing RIPA buffer and ultrasounds. The degree of activation of the JAK-3 and TYK-2 pathways was measured by detecting the phosphorylation of both targets as well as of STAT1, STAT3, STAT4, STAT5 and STAT6 through western blot by employing specific antibodies for total and phosphorylated proteins. Results 19 UC patients were consecutively included. Mean age was 46 years old. 53% were female, 47% were extensive colitis (E3) and 53% left-side colitis (E2). Regarding endoscopic activity, 26% had Mayo-1, 53% Mayo-2, and 21% Mayo-3. Immunoreactive bands for both phosphorylated JAK-3 and TYK-2 were detected in the biopsies from UC patients, evidencing that colonic inflammation leads to an activation of both targets. The study of STATs phosphorylation showed immunoreactive bands for phosphorylated forms of STAT1, STAT3, STAT4, STAT5 and STAT6 confirming the activation of both signalling-pathways in these patients (Figure 1). Conclusion The developed translational workflows involving basic/clinical research confirm the activation of both JAK-3 and TYK-2-dependent signalling pathways in UC patients, validating both kinases as targets for treating UC. The developed methodology allows studying the target engagement for future JAK-3/ TYK-2 inhibitors employed in clinical trials.


2020 ◽  
Author(s):  
Tomoyuki Okada ◽  
Tsutomu Kanda ◽  
Naoki Ueda ◽  
Yuichiro Ikebuchi ◽  
Keiichi Hashiguchi ◽  
...  

2019 ◽  
Author(s):  
Jiaqi Zhang ◽  
Xue Wang ◽  
Lin Xu ◽  
Zedan Zhang ◽  
Fengyun Wang ◽  
...  

Abstract Objectives: To reveal the molecular mechanisms of ulcerative colitis (UC) and provide potential biomarkers for UC gene therapy. Methods: We downloaded the GSE87473 microarray dataset from the Gene Expression Omnibus (GEO) and identified the differentially expressed genes (DEGs) between UC samples and normal samples. Then ,a module partition analysis was performed based on a weighted gene co-expression network analysis (WGCNA),followed by pathway and functional enrichment analyses. Furthermore, we investigated the hub genes . At last, data validation was performed to ensure the reliability of the hub genes. Results: Between UC group and normal group, 988 DEGs were investigated . The DEGs were clustered into 5 modules using WGCNA. These DEGs were mainly enriched in functions such as the immune response, the inflammatory response and chemotaxis, and they were mainly enriched in KEGG pathways such as the cytokine-cytokine receptor interaction , chemokine signaling pathway, and complement and coagulation cascades. The hub genes, including dual oxidase maturation factor 2(DUOXA2), serum amyloid A (SAA) 1 and SAA2, TNFAIP3-interacting protein 3(TNIP3), C-X-C motif chemokine (CXCL1), solute carrier family 6 member 14(SLC6A14) and complement decay-accelerating factor (CD antigen CD55),were revealed as potential tissue biomarkers for UC diagnosis or treatment. Conclusions: This study provides supportive evidence that DUOXA2, A-SAA, TNIP3, CXCL1, SLC6A14 and CD55 might be used as potential biomarkers for tissue biopsy of UC, especially SLC6A14 and CD55, which may be new targets for UC gene therapy. Moreover, the DUOX2/DUOXA2, NF-κB /TNIP3 and CXCL1/CXCR2 pathways might play an important role in the progression of UC through the chemokine signaling pathway and inflammatory response.


Author(s):  
Xiaojuan Shao ◽  
Jintao Li ◽  
Fumin Xu ◽  
Dongfeng Chen ◽  
Kaijun Liu

Aim. The incidence and clinical manifestations of inflammatory bowel disease (IBD) are thought to have gender differences, which suggests that the estrogen signaling pathway and intestinal flora may play key roles in the pathogenesis of IBD. In IBD, microRNA-155 (miR-155) is upregulated and regulates G protein coupled estrogen receptor (GPER1), which affects the intestinal flora. The objective of this study was to investigate the role of the estrogen receptors and miR-155 in the pathogenesis of IBD. Methods. From July 2018 to July 2019, in the Department of Gastroenterology at Daping Hospital, Army Military Medical University, a total of 50 patients with IBD were included in this study, and 24 healthy examinees were randomly selected as the control group. Colonoscopies were performed, and clinical characteristics and blood samples were collected from all of the subjects. The serum cytokine levels in the patients with IBD and the health donors were detected by ELISA, and the estrogen receptor level measurements for all of the participants were assessed by immunohistochemistry (IHC) and quantitative real-time PCR (qPCR). The miR-155 levels were detected by qPCR in all of the participants, and miR-155−/− mice were used to investigate the mechanism of miR-155 in the pathogenesis of IBD. Results. The clinical characteristics and medications were different for the IBD patients when gender was considered. The male patients produced more proinflammatory cytokines, and while GPER1 expression was downregulated, miR-155 was upregulated in the patients with IBD. MiR-155 showed proinflammatory activity, while GPER1 showed an anti-inflammatory response during the pathogenesis of IBD. The miR-155−/− mice showed improvements in weight loss, survival, rectal bleeding, colon length, and histopathological changes compared with the wild-type mice. Furthermore, the male miR-155−/− mice showed increased inflammation compared to the female miR-155−/− mice in the above aspects. Conclusion. This study presents evidence indicating that miR-155 plays a key role in the pathogenesis of IBD for the different genders. MiR-155 was upregulated and showed proinflammatory activity, whereas GPER1 showed an anti-inflammatory response during the pathogenesis of IBD. The results demonstrated that more proinflammatory cytokines and reduced GPER1 levels were observed in the male IBD patients. Thus, miR-155 was involved in the regulation of GPER1 and induced gender differences in IBD patients. MiR-155 may be a potential marker for IBD-targeted therapy.


Sign in / Sign up

Export Citation Format

Share Document