bacterial genus
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 33)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Mojtaba Bayani ◽  
Seyed Hamed Mirhoseini ◽  
Ali Koolivand ◽  
Hamid Sarlak ◽  
Rahmatollah Moradzadeh ◽  
...  

Introduction: The indoor environment of dental clinics may endanger dental patients and personnel and due to a great variety of air pollutants throughout the usual dental operation. The purpose of the present cross-sectional study was the evaluation of Indoor Air Quality (IAQ) and factors affecting it in a dentistry faculty of Arak University of Medical Sciences. Material and methods: The IAQ of five dental active wards and the patient waiting room was evaluated. The concentrations of Total Volatile Organic Compounds (TVOC), CO2, particulate matter, and bioaerosols were measured. Results: The TVOCs concentration in sampling locations ranged between 817 to 3670 μg/m3 during dental work and exceeded the Leadership in Energy and Environmental Design (LEED) guideline in all sampling locations. The highest values of Particulate Matter (PM) for PM10, PM2.5, and PM1 were observed in the periodontics ward, while the lowest values were observed in the endodontics ward. The PM2.5 concentrations exceeded the WHO limit in periodontics and pediatric wards. TVOC levels had a significant positive correlation with temperature (r=0.374, p<0.01) and RH (r=0.265, p<0.05). The predominant bacterial genus of the patient waiting area was Bacillus (36%), while the dominant bacterial genus of the other sampling site was Micrococcus spp. Penicillium (35.5%) and Cladosporium (28%) were the predominant fungi detected. Conclusion: Controlling of airborne particles is to be standardized by the infection control actions of dental clinics and improved ventilation capacity in the air conditioning system was suggested for reducing VOCs and PM concentrations.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257102
Author(s):  
Heng Ku ◽  
Mwila Kabwe ◽  
Hiu Tat Chan ◽  
Cassandra Stanton ◽  
Steve Petrovski ◽  
...  

The bacterial genus Klebsiella includes the closely related species K. michiganensis, K. oxytoca and K. pneumoniae, which are capable of causing severe disease in humans. In this report we describe the isolation, genomic and functional characterisation of the lytic bacteriophage KMI8 specific for K. michiganensis. KMI8 belongs to the family Drexlerviridae, and has a novel genome which shares very little homology (71.89% identity over a query cover of only 8%) with that of its closest related bacteriophages (Klebsiella bacteriophage LF20 (MW417503.1); Klebsiella bacteriophage 066039 (MW042802.1). KMI8, which possess a putative endosialidase (depolymerase) enzyme, was shown to be capable of degrading mono-biofilms of a strain of K. michiganensis that carried the polysaccharide capsule KL70 locus. This is the first report of a lytic bacteriophage for K. michiganensis, which is capable of breaking down a biofilm of this species.


2021 ◽  
Vol 47 (56) ◽  
pp. 259-268
Author(s):  
Sandeep Tamber ◽  
Brendan Dougherty ◽  
Kimberly Nguy

Background: Members of the bacterial genus Salmonella cause salmonellosis, a disease with a spectrum of clinical presentations from a self-limiting gastroenteritis to more severe bacteremia, organ failure and sepsis. The genus consists of over 2,600 serological variants (serovars). Important differences in the pathogenesis of Salmonella serovars have been noted. Objective: The purpose of this study was to determine which Salmonella serovars were more likely to be associated with bacteremia in Canada. Methods: Information on the total number of Salmonella infections and blood isolations reported to the National Enteric Surveillance Program (NESP) from 2006 to 2019 was extracted for each serovar. The risk (proportion) and likelihood (odds) of bacteremia were calculated for all serovars. Results: Of the 96,082 Salmonella cases reported to the NESP during the 14-year study period, 4.4% (95% CI: 4.3%–4.6%) were bacteremic. Twenty nontyphoidal Salmonella (NTS) serovars were associated with lower rates of bacteremia compared to all NTS serovars, and 19 NTS serovars were identified as having higher rates. Heidelberg, Oranienburg, Schwarzengrund, Virchow, Panama and Poona among the top 25 most commonly reported serovars in Canada during the study period. Conclusion: The identification of serovars associated with Salmonella bacteremia in Canada is a first step towards understanding differences in pathogenesis and disease presentation.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lei Tian ◽  
Enze Wang ◽  
Xiaolong Lin ◽  
Li Ji ◽  
Jingjing Chang ◽  
...  

Abstract Background Rice, which serves as a staple food for more than half of the world’s population, is grown worldwide. The hybridization of wild and cultivated rice has enabled the incorporation of resistance to varying environmental conditions. Endophytic microbiota are known to be transferred with their host plants. Although some studies have reported on the endophytic microbiota of wild and cultivated rice, the inheritance from wild and cultivated rice accessions in next generations, in terms of endophytic microbiota, has not been examined. Results In the present study, the endophytic microbial community structures of Asian and African wild and cultivated rice species were compared with those of their F1 offspring. High-throughput sequencing data of bacterial 16S rDNA and fungal internal transcribed spacer regions were used to classify the endophytic microbiota of collected samples of rice. Results indicated that when either African or Asian wild rice species were crossed with cultivated rice accessions, the first generation harbored a greater number of root endophytic fungi than the cultivated parent used to make the crosses. Network analysis of the bacterial and fungal operational taxonomic units revealed that Asian and African wild rice species clustered together and exhibited a greater number of significant correlations between fungal taxa than cultivated rice. The core bacterial genus Acidovorax and the core fungal order Pleosporales, and genera Myrothecium and Bullera connected African and Asian wild rice accessions together, and both the wild rice accessions with their F1 offspring. On the other hand, the core bacterial genus Bradyrhizobium and the core fungal genera Dendroclathra linked the African and Asian cultivated rice accessions together. Conclusions This study has theoretical significance for understanding the effect of breeding on the inheritance of endophytic microbiota of rice and identifying beneficial endophytic bacteria and fungi among wild and cultivated rice species, and their F1 offspring.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Sun ◽  
Chunsheng Bai ◽  
Haiwen Xu ◽  
Na Na ◽  
Yun Jiang ◽  
...  

The present study was aimed at investigating the bacterial community in lactic acid bacteria (LAB) suspensions prepared from whole-plant corn silage (LAB suspension-CS) and Elymus sibiricus silage (LAB suspension-ES) and the bacterial community succession of whole-plant corn silages inoculated with LAB suspension-CS or LAB suspension-ES during initial aerobic phase, intense fermentation phase, and stable phase. The LAB suspensions were cultured in sterile Man, Rogosa, Sharpe broth at 37°C for 24 h and used as inoculants for ensiling. The chopped whole-plant corn was treated with distilled water (CK), LAB suspension-CS (CSL), or LAB suspension-ES (ESL) and then ensiled in vacuum-sealed plastic bags containing 500 g of fresh forage. Silages were sampled at 0 h, anaerobic state (A), 3 h, 5 h, 10 h, 24 h, 2 days, 3 days, 10 days, 30 days, and 60 days of ensiling with four replicates for each treatment. The results showed that Lactobacillus, Weissella, and Lachnoclostridium_5 dominated the bacterial community in LAB suspension-CS; Lactobacillus was the most predominant bacterial genus in LAB suspension-ES. During the initial aerobic phase (from 0 h to A) of whole-plant corn silage, the pH and the abundances of Pantoea, Klebsiella, Rahnella, Erwinia, and Serratia increased. During the intense fermentation phase (from A to 3 days), the pH decreased rapidly, and the microbial counts increased exponentially; the most predominant bacterial genus shifted from Pantoea to Weissella, and then to Lactobacillus; inoculating LAB suspensions promoted the bacterial succession and the fermentation process, and LAB suspension-CS was more effective than LAB suspension-ES. During the stable phase (from 3 to 60 days), the pH and the microbial counts decreased, and Lactobacillus dominated the bacterial community with a little decrease. The results also confirmed the existence of LAB fermentation relay during fermentation process, which was reflected by Weissella, Lactococcus, and Leuconostoc in the first 5 h; Weissella, Lactococcus, Leuconostoc, Lactobacillus, and Pediococcus between 5 and 24 h; and Lactobacillus from 24 h to 60 days.


2021 ◽  
Author(s):  
Neha Faridi ◽  
Merwyn Packia raj Samuel ◽  
Shalini Bhatt ◽  
Ankur Agrawal ◽  
Veena Pande ◽  
...  

Abstract Ralstonia pseudosolanacearum and other members of Ralstonia solanacearum species complex (RSSC) causes the disease bacterial wilt in many crops of economic importance. The organism is known to form Viable But Non Culturable cells (VBNC). VBNCs resuscitate invitro during the “resuscitation window” period and are infectious Previous studies have identified nonresuscitatable VBNCs in various bacterial genus including RSSC, however their infectivity was not elucidated and described. In this work, VBNCs of two Ralstonia pseudosolanacearum strains were generated by exposing the microcosms to psychrophilic stress, UV-C radiation and 70% isopropanol. Both resuscitatable and nonresuscitatable VBNCs were observed in psychrophilic and UV-C stressed microcosms. The nonresuscitatable VBNCs generated at psychrophilic temperature were found infective. Based on resuscitation properties, nonresuscitatable VBNCs can be considered as a different VBNC type from resuscitatable VBNCs.


Author(s):  
Takayoshi Awakawa ◽  
Lena Barra ◽  
Ikuro Abe

Abstract Sulfonamides and sulfamates are a group of organosulfur compounds that contain the signature sulfamoyl structural motif. These compounds were initially only known as synthetic antibacterial drugs but were later also discovered as natural products. Eight highly potent examples have been isolated from actinomycetes to date, illustrating the large biosynthetic repertoire of this bacterial genus. For the biosynthesis of these compounds, several distinct and unique biosynthetic machineries have been discovered, capable to generate the unique S-N bond. For the creation of novel, second generation natural products by biosynthetic engineering efforts, a detailed understanding of the underlying enzyme machinery towards potent structural motifs is crucial. In this review, we aim to summarize the current state of knowledge on sulfonamide and sulfamate biosynthesis. A detailed discussion for the secondary sulfamate ascamycin, the tertiary sulfonamide sulfadixiamycin A, and the secondary sulfonamide SB-203208 is provided and their bioactivities and mode of actions are discussed.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hannah G. P. Smith ◽  
David C. Bean ◽  
William Pitchers ◽  
Mary Valcanis ◽  
Rohan H. Clarke ◽  
...  

ABSTRACT Citrobacter is a ubiquitous bacterial genus whose members inhabit a variety of niches. Some species are clinically important for both antimicrobial resistance (AMR) carriage and as the cause of nosocomial infections. Surveillance of Citrobacter species in the environment can provide indicators of the spread of AMR genes outside clinical spaces. In this study, we present draft genome sequences of four Citrobacter isolates obtained from three species of wild Australian shorebirds.


2021 ◽  
Vol 320 ◽  
pp. 124412
Author(s):  
Manish Kumar ◽  
Siming You ◽  
Jingzi Beiyuan ◽  
Gang Luo ◽  
Juhi Gupta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document