Field simulation of settlement analysis for shallow foundation using cone penetration data

Author(s):  
Ersin Arel ◽  
Ahmet Can Mert
2020 ◽  
Vol 3 (1) ◽  
pp. 69
Author(s):  
Tomy Gunawan ◽  
Alfred Jonathan S ◽  
Ali Iskandar

Investigation of soil is important to do in the planning of building construction such as foundations, piles, roads, etc. To find out the bearing capacity and parameters of the soil where a building will be built. Investigation of the soil can be done in various ways, one of which uses an electrical cone penetration test with pore water pressure. In the embankment project for the calculations on the soil so that it can be known about the settlement in soil and the length of time it reaches the hydrostatic level. Cone penetraton test is reqired and the results produce data in the form of cone resistance (qc), blanket friction (fs) and pore pressure (u) which will be processed in the CPET-IT program in order to produce soil parameters that will be used for soil settlement analysis. To find out the settlement of embankment soil, it will be supported by finite difference program. Results of studies on general is to find the effectiveness of embankment using prefabricated vertical drain (PVD) and without prefabricated vertical drain (PVD).AbstrakPenyelidikan terhadap tanah penting untuk dilakukan pada perencanaan konstruksi bangunan seperti pondasi, timbunan, jalan, dll. Untuk mengetahui daya dukung dan parameter-parameter tanah tempat akan dibangunnya sebuah bangunan Penyelidikan tanah dapat dilakukan dengan berbagai macam cara salah satunya adalah menggunakan  uji sondir elektrik dengan tekanan air pori. Pada proyek timbunan memerlukan perhitungan pada tanahnya agar dapat diketahui besarnya penurunan pada tanah dan lama waktu tanah mencapai keadaan hidrostatis. Sehingga dilakukan uji sondir secara elektrik dan dari hasil uji sondir menghasilkan data berupa tahanan konus (qc), gesekan selimut (fs) dan pore pressure (u) yang akan diolah kedalam program CPET-IT agar menghasilkan parameter-parameter tanah yang akan digunakan untuk analisis penurunan pada tanah.Untuk mengetahui besarnya penurunan pada tanah timbunan maka akan dibantu program berbasis elemen higga. Hasil studi secara umum menunjukkan seberapa besar efektivitas pada timbunan dengan menggunakan prefabricated vertical drain (PVD) dan tanpa prefabricated vertical drain (PVD).


2019 ◽  
Vol 6 (3) ◽  
pp. 182106
Author(s):  
Adam G. Taylor ◽  
Jae H. Chung

This paper presents an analysis technique of high-order contact potential problems and its application to an elastic settlement analysis of a shallow foundation system subjected to a combined traction boundary condition. Closed-form solutions of potential functions are derived for an elastic half-space subjected to bilinear tangential traction boundary conditions over rectangular surface regions. Using the principle of superposition, the present solutions provide a means to form an approximate and continuous solution of elastic contact problems with higher-order tangential boundary conditions. As an application example, an elastic settlement analysis of a rigid footing founded on a dense granular soil is performed under a tangential traction boundary condition prescribed in an analogy with the stress equilibrium states of static sandpiles. A generalized solution approach to combined normal and tangential traction boundary value problems is discussed in the context of foundation engineering.


Author(s):  
Rafiu Adegbola ◽  
Kayode Oyedele ◽  
Elizabeth Abidoye

Introduction: Geophysical characterization refers to the collection of information associated with subsurface features. Geotechnical involves engineering structural performance studies which are used to obtain information on the physical properties of soil and rock around a site to design earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions. Aim: The study was aimed at characterizing the subsurface formations for the purpose of determining its capacity to withstand engineering structures. Materials and Methods: Geophysical techniques involving eight (8) vertical electrical sounding (VES) and Wenner array were carried out with two (2) traverses. Geotechnical investigation involving cone penetration test (CPT) was also carried out. Results: The results obtained were presented as 1D resistivity profiles and Pseudo-sections of 2-D. Three (3) geo-electric layers were delineated within the study area and these comprise of topsoil, peat or clay and silty sand. The CPT results were used in the calculation of bearing capacity using Bustamante and Gianeselli equation for pile foundations and Meyehorf equation to determine the maximum load the materials can withstand respectively. Conclusion: The shallow subsurface geology was adjudged to be mechanically unstable with low penetration resistance values up to the depth of 11m. The methods conformed and confirmed that shallow foundation was considered unsuitable for the intended engineering structure. Keywords: Meyehorf, Bustamante and Gianeselli, Subsurface, Geology, Unstable, Foundation.


Sign in / Sign up

Export Citation Format

Share Document