Characteristics of cell growth and lipid accumulation of high and low lipid-producing strains of Mucor circinelloides grown on different glucose-oil mixed media

2018 ◽  
Vol 72 ◽  
pp. 31-40 ◽  
Author(s):  
Xinyi Zan ◽  
Xin Tang ◽  
Linfang Chu ◽  
Yuanda Song
2002 ◽  
Vol 30 (6) ◽  
pp. 1047-1050 ◽  
Author(s):  
C. Ratledge

A small number of eukaryotic micro-organisms, the oleaginous species, can accumulate triacylglycerols as cellular storage lipids, sometimes up to 70% of the biomass. Some of these lipids, particularly those containing high proportions of polyunsaturated fatty acids of nutritional and dietary importance, are now in commercial production; these are known as single-cell oils. The biochemistry of lipid accumulation has been investigated in yeasts and filamentous fungi and can now be described in some detail: lipid accumulation is triggered by cells exhausting nitrogen from the culture medium, but glucose continues to be assimilated. Activity of isocitrate dehydrogenase within the mitochondrion, however, now slows or even stops due to the diminution of AMP within the cells. This leads to the accumulation of citrate, which is transported into the cytosol and cleaved to acetyl-CoA by ATP:citrate lyase, an enzyme that does not occur in non-oleaginous species. This enzyme is therefore essential for lipid accumulation. The presence of this enzyme does not, however, explain why different species of oleaginous micro-organisms have different capacities for lipid accumulation. The extent of lipid accumulation is considered to be controlled by the activity of malic enzyme (ME), which acts as the sole source of NADPH for fatty acid synthase (FAS). If ME is inhibited, or genetically disabled, then lipid accumulation is very low. There is no general pool of NADPH which can otherwise be used by FAS. The stability of ME is therefore crucial and it is proposed that ME is physically attached to FAS as part of the lipogenic metabolon. ME activity correlates closely with lipid accumulation in two filamentous fungi, Mucor circinelloides and Mortierella alpina. When ME ceases to be active, lipid accumulation also stops. No other enzyme activity shows such a correlation.


2015 ◽  
Vol 197 ◽  
pp. 23-29 ◽  
Author(s):  
Lina Zhao ◽  
Huaiyuan Zhang ◽  
Liping Wang ◽  
Haiqin Chen ◽  
Yong Q. Chen ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Wu Yang ◽  
Shiqi Dong ◽  
Junhuan Yang ◽  
Hassan Mohamed ◽  
Aabid Manzoor Shah ◽  
...  

The mitochondrial citrate transporter (MCT) plays an important role in citrate efflux from the mitochondria in eukaryotes, and hence provides a direct correlation between carbohydrate metabolism and lipid synthesis. Our previous studies on transporters confirmed the presence of two MCTs (TCT and CT) in oleaginous Mucor circinelloides WJ11 associated with high lipid accumulation. However, the molecular mechanism of citrate efflux from the mitochondria by MCT in M. circinelloides is still unclear. To study the citrate transport mechanism of CT, the citrate transporter gene was expressed in Escherichia coli, and its product was purified. The citrate transport activity of the protein was studied in CT reconstituted liposomes. Our results showed high efficiency of CT for [14C] citrate/citrate exchange with Km 0.01 mM at 25°C. Besides citrate, other molecules such as oxaloacetate, malate, fumarate, succinate aconitate, oxoadipate, isocitrate, and glutamate also promote citrate transport. In addition, the ct overexpression and knockout plasmids were constructed and transferred into M. circinelloides WJ11, and the mitochondria were isolated, and the transport activity was studied. Our findings showed that in the presence of 10 mM malate, the mitochondria of ct-overexpressing transformant showed 51% increase in the efflux rate of [14C] citrate, whereas the mitochondria of the ct-knockout transformant showed 18% decrease in citrate efflux compared to the mitochondria of wild-type WJ11. This study provided the first mechanistic evidence of citrate efflux from the mitochondria by citrate transporter in oleaginous filamentous fungus M. circinelloides, which is associated with high lipid accumulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuwen Wang ◽  
Hassan Mohamed ◽  
Yonghong Bao ◽  
Chen Wu ◽  
Wenyue Shi ◽  
...  

The fungus, Mucor lusitanicus, is of great interest for microbial lipids, because of its ability to accumulate intracellular lipid using various carbon sources. The biosynthesis of fatty acid requires the reducing power NADPH, and acetyl-CoA, which is produced by the cleavage of citrate in cytosol. In this study, we employed different strategies to increase lipid accumulation in the low lipid-producing fungi via metabolic engineering technology. Hence, we constructed the engineered strain of M. lusitanicus CBS 277.49 by using malate transporter (mt) and 2-oxoglutarate: malate antiporter (sodit) from M. circinelloides WJ11. In comparison with the control strain, the lipid content of the overexpressed strains of mt and sodit genes were increased by 24.6 and 33.8%, respectively. These results showed that mt and sodit can affect the distribution of malate in mitochondria and cytosol, provide the substrates for the synthesis of citrate in the mitochondria, and accelerate the transfer of citrate from mitochondria to cytosol, which could play a significant regulatory role in fatty acid synthesis leading to lipids over accumulation.


Microbiology ◽  
2001 ◽  
Vol 147 (6) ◽  
pp. 1507-1515 ◽  
Author(s):  
Yuanda Song ◽  
James P Wynn ◽  
Yonghua Li ◽  
David Grantham ◽  
Colin Ratledge

2020 ◽  
Vol 6 (4) ◽  
pp. 260
Author(s):  
Simona Dzurendova ◽  
Boris Zimmermann ◽  
Valeria Tafintseva ◽  
Achim Kohler ◽  
Svein Jarle Horn ◽  
...  

The biomass of Mucor circinelloides, a dimorphic oleaginous filamentous fungus, has a significant nutritional value and can be used for single cell oil production. Metal ions are micronutrients supporting fungal growth and metabolic activity of cellular processes. We investigated the effect of 140 different substrates, with varying amounts of metal and phosphate ions concentration, on the growth, cell chemistry, lipid accumulation, and lipid profile of M. circinelloides. A high-throughput set-up consisting of a Duetz microcultivation system coupled to Fourier transform infrared spectroscopy was utilized. Lipids were extracted by a modified Lewis method and analyzed using gas chromatography. It was observed that Mg and Zn ions were essential for the growth and metabolic activity of M. circinelloides. An increase in Fe ion concentration inhibited fungal growth, while higher concentrations of Cu, Co, and Zn ions enhanced the growth and lipid accumulation. Lack of Ca and Cu ions, as well as higher amounts of Zn and Mn ions, enhanced lipid accumulation in M. circinelloides. Generally, the fatty acid profile of M. circinelloides lipids was quite consistent, irrespective of media composition. Increasing the amount of Ca ions enhanced polyphosphates accumulation, while lack of it showed fall in polyphosphate.


Sign in / Sign up

Export Citation Format

Share Document