Regulation of lipid accumulation in oleaginous micro-organisms

2002 ◽  
Vol 30 (6) ◽  
pp. 1047-1050 ◽  
Author(s):  
C. Ratledge

A small number of eukaryotic micro-organisms, the oleaginous species, can accumulate triacylglycerols as cellular storage lipids, sometimes up to 70% of the biomass. Some of these lipids, particularly those containing high proportions of polyunsaturated fatty acids of nutritional and dietary importance, are now in commercial production; these are known as single-cell oils. The biochemistry of lipid accumulation has been investigated in yeasts and filamentous fungi and can now be described in some detail: lipid accumulation is triggered by cells exhausting nitrogen from the culture medium, but glucose continues to be assimilated. Activity of isocitrate dehydrogenase within the mitochondrion, however, now slows or even stops due to the diminution of AMP within the cells. This leads to the accumulation of citrate, which is transported into the cytosol and cleaved to acetyl-CoA by ATP:citrate lyase, an enzyme that does not occur in non-oleaginous species. This enzyme is therefore essential for lipid accumulation. The presence of this enzyme does not, however, explain why different species of oleaginous micro-organisms have different capacities for lipid accumulation. The extent of lipid accumulation is considered to be controlled by the activity of malic enzyme (ME), which acts as the sole source of NADPH for fatty acid synthase (FAS). If ME is inhibited, or genetically disabled, then lipid accumulation is very low. There is no general pool of NADPH which can otherwise be used by FAS. The stability of ME is therefore crucial and it is proposed that ME is physically attached to FAS as part of the lipogenic metabolon. ME activity correlates closely with lipid accumulation in two filamentous fungi, Mucor circinelloides and Mortierella alpina. When ME ceases to be active, lipid accumulation also stops. No other enzyme activity shows such a correlation.

2020 ◽  
Vol 62 (1-2) ◽  
pp. 49-68
Author(s):  
T. O. Kondratiuk ◽  
T. V. Beregova ◽  
I. Yu. Parnikoza ◽  
S. Y. Kondratyuk ◽  
A. Thell

The identification of the diversity of microscopic fungi of lithobiont communities of the Argentine Islands in specimens collected during the 22nd Ukrainian Antarctic Expedition was the purpose of this work. Samples of rock, soil, mosses and lichens of rock micro-habitats of “Crustose lichen sub-formation and fruticose lichen and moss cushion sub-formation” were used in the work. These samples were used for extracting and cultivation of filamentous fungi on dense nutrient media. Determination of physiological and biochemical characteristics and identification of yeast-like fungi were performed using a microbiological analyser ‘Vitek-2’ (‘Bio Merieux’, France). Cultivation of microorganisms was carried out at temperatures from +2 to +37 °C. In results cultures of microscopic fungi of Zygomycota (Mucor circinelloides), Ascomycota (species of the genera cf. Tlielebolus, Talaromyces), representatives of the Anamorphic fungi group (Geomyces pannorum, species of the genera Alternaria, Acremonium, Aspergillus, Penicillium, and Cladosporium) were isolated from Antarctic samples. Microscopic fungi Penicillium spp. were dominated after the frequency in the studied samples (54.5%). Rhodotorula rubra and Candida sp. among isolated yeast fungi, and dark pigmented fungi represented by Aureobasidium pulhdans and Exophiala spp. were identified. The biological properties of a number of isolated fungi (the potential ability to synthesise important biologically active substances: melanins, carotenoids, lipids) are characterised. Mycobiota of rock communities of Argentine Islands is rich on filamentous and yeast fungi similarly to other regions of Antarctica. A number of fungi investigated are potentially able to synthesise biologically active substances. The dark pigmented species of the genera Cladosporium, Exophiala, Aureobasidium pulhdans, capable of melanin synthesis; ‘red’ yeast Rhodotorula rubra (carotenoid producers and resistant to toxic metals); Mucor circinelloides and Geomyces pannorum, lipid producers, are among these fungi. Yeast-like fungi assimilated a wide range of carbohydrates, which will allow them to be further used for cultivation in laboratory and process conditions. The collection of technologically promising strains of microorganisms, part of the Culture Collection of Fungi at Taras Shevchenko National University of Kyiv (Ukraine), is updated with isolated species (strains) of filamentous fungi and yeast – potential producers of biologically active substances, obtained within this study.


Microbiology ◽  
1999 ◽  
Vol 145 (8) ◽  
pp. 1911-1917 ◽  
Author(s):  
James P. Wynn ◽  
Aidil bin Abdul Hamid ◽  
Colin Ratledge

2008 ◽  
Vol 36 (6) ◽  
pp. 1461-1466 ◽  
Author(s):  
Peter Garred

MBL (mannose-binding lectin) is primarily a liver-derived collagen-like serum protein. It binds sugar structures on micro-organisms and on dying host cells and is one of the four known mediators that initiate activation of the complement system via the lectin pathway. Common variant alleles situated both in promoter and structural regions of the human MBL gene (MBL2) influence the stability and the serum concentration of the protein. Epidemiological studies have suggested that genetically determined variations in MBL serum concentrations influence the susceptibility to and the course of different types of infectious, autoimmune, neoplastic, metabolic and cardiovascular diseases, but this is still a subject under discussion. The fact that these genetic variations are very frequent, indicates a dual role of MBL. This overview summarizes the current molecular understanding of human MBL2 genetics.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A950-A950
Author(s):  
Mara De Martino ◽  
Camille Daviaud ◽  
Claire Vanpouille-Box

BackgroundGlioblastoma (GBM) is the most aggressive and incurable adult brain tumor. Radiation therapy (RT) is an essential modality for GBM treatment and is recognized to stimulate anti-tumor immunity by inducing immunogenic cell death (ICD) subsequent to endoplasmic reticulum (ER) stress. However, RT also exacerbates potent immunosuppressive mechanisms that facilitate immune evasion. Notably, increased de novo lipid synthesis by the fatty acid synthase (FASN) is emerging as a mechanism of therapy resistance and immune escape. Here, we hypothesize that RT induces FASN to promote GBM survival and evade immune recognition by inhibiting ER stress and ICD.MethodsTo determine if lipid synthesis is altered in response to RT, we first assessed FASN expression by western blot (WB) and lipid accumulation by BODIPY staining in murine (CT2A and GL261) and human (U118) GBM cell lines. Next, FASN expression was blocked in CT2A cells using CRISPR-Cas9 or an inducible shRNA directed against Fasn to evaluate ICD and ER stress markers by ELISA, WB, and electron microscopy. Finally, CT2AshFASN cells or its non-silencing control (CT2AshNS) were orthotopically implanted and FASN knockdown was induced by feeding the mice with doxycycline. The immune contexture was determined by in situ immunofluorescence (n=3/group). Remaining mice were followed for survival (n=7/group).ResultsWe found that in vitro irradiation of GBM cells induces lipid accumulation in a dose-dependent fashion; an effect that is magnified over time lasting at least 6/7 days. Consistent with these findings, FASN expression was upregulated in irradiated GBM cells. Confirming the role of FASN, RT-induced accumulation of lipids was reverted when GBM cells were incubated with a FASN inhibitor. Next, we found that FASN ablation in CT2A cells induces mitochondria disruption and was sufficient to increase the expression of the ER stress makers BIP and CHOP. Along similar lines, shFASN enhances the secretion of the ICD markers HMGB1, IFN-beta and CXCL10 in irradiated CT2A cells. In vivo, CT2AshFASN tumors presented increased infiltration of CD11c+ cells and CD8+ T cells, consistent with prolonged mice survival (56 days vs. 28 days for CT2AshNS). Importantly, 43% of CT2AshFASN-bearing mice remained tumor-free for more than 70 days, while none of the CT2AshNS-bearing mice survived.ConclusionsAltogether, our data suggest that FASN-mediated lipid synthesis is an important mechanism to prevent ER stress, ICD, and anti-tumor immune responses in GBM. While much work remains to be done, our data propose FASN as a novel therapeutic target to overcome immunosuppression and sensitize GBM to immunotherapies.


2017 ◽  
Vol 45 (04) ◽  
pp. 757-772 ◽  
Author(s):  
Sun Haeng Park ◽  
Yoon-Young Sung ◽  
Kyoung jin Nho ◽  
Dong Sun Kim ◽  
Ho Kyoung Kim

Atherosclerosis was previously thought to be a disease that primarily involves lipid accumulation in the arterial wall. In this report, we investigated the effect of Viola mandshurica W. Becker (V. mandshurica) water extract on atherosclerosis in apolipoprotein E deficient (ApoE[Formula: see text]) mice. The administration of V. mandshurica to high-fat diet-fed mice reduced body weight, liver weight, and serum levels of lipids (total cholesterol, low-density lipoprotein-cholesterol, triglycerides), glucose, alanine transaminase, and aspartate transaminase. Histopathologic analyses of the aorta and liver revealed that V. mandshurica attenuated atherosclerotic lesions and reduced lipid accumulation, inflammatory responses and fatty acid synthesis. V. mandshurica also increased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK), thereby reducing acetyl-CoA carboxylase (ACC) in liver tissue and inhibiting sterol regulatory element-binding protein 1c (SREBP-1c). V. mandshurica reduced protein expression levels of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin) as well as ACC, fatty acid synthase, and SREBP-1c. In addition, quantitative analysis of V. mandshurica by high-performance liquid chromatography revealed the presence of esculetin and scopoletin. Esculetin and scopoletin reduced adhesion molecules in human aortic smooth muscle cells. Our results indicate that the anti-atherosclerotic effects of V. mandshurica may be associated with activation of the AMPK pathway. Therefore, AMPK-dependent phosphorylation of SREBP-1c by V. mandshurica may be an effective therapeutic strategy for combatting atherosclerosis and hepatic steatosis.


2018 ◽  
Vol 49 (5) ◽  
pp. 1870-1884 ◽  
Author(s):  
Chian-Jiun Liou ◽  
Ciao-Han Wei ◽  
Ya-Ling Chen ◽  
Ching-Yi Cheng ◽  
Chia-Ling Wang ◽  
...  

Background/Aims: Fisetin is a naturally abundant flavonoid isolated from various fruits and vegetables that was recently identified to have potential biological functions in improving allergic airway inflammation, as well as anti-oxidative and anti-tumor properties. Fisetin has also been demonstrated to have anti-obesity properties in mice. However, the effect of fisetin on nonalcoholic fatty liver disease (NAFLD) is still elusive. Thus, the present study evaluated whether fisetin improves hepatic steatosis in high-fat diet (HFD)-induced obese mice and regulates lipid metabolism of FL83B hepatocytes in vitro. Methods: NAFLD was induced by HFD in male C57BL/6 mice. The mice were then injected intraperitoneally with fisetin for 10 weeks. In another experiment, FL83B cells were challenged with oleic acid to induce lipid accumulation and treated with various concentrations of fisetin. Results: NAFLD mice treated with fisetin had decreased body weight and epididymal adipose tissue weight compared to NAFLD mice. Fisetin treatment also reduced liver lipid droplet and hepatocyte steatosis, alleviated serum free fatty acid, and leptin concentrations, significantly decreased fatty acid synthase, and significantly increased phosphorylation of AMPKα and the production of sirt-1 and carnitine palmitoyltransferase I in the liver tissue. In vitro, fisetin decreased lipid accumulation and increased lipolysis and β-oxidation in hepatocytes. Conclusion: This study suggests that fisetin is a potential novel treatment for alleviating hepatic lipid metabolism and improving NAFLD in mice via activation of the sirt1/AMPK and β-oxidation pathway.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chian-Jiun Liou ◽  
Shu-Ju Wu ◽  
Szu-Chuan Shen ◽  
Li-Chen Chen ◽  
Ya-Ling Chen ◽  
...  

Abstract Background Phloretin is isolated from apple trees and could increase lipolysis in 3T3-L1 adipocytes. Previous studies have found that phloretin could prevent obesity in mice. In this study, we investigated whether phloretin ameliorates non-alcoholic fatty liver disease (NAFLD) in high-fat diet (HFD)-induced obese mice, and evaluated the regulation of lipid metabolism in hepatocytes. Methods HepG2 cells were treated with 0.5 mM oleic acid to induce lipid accumulation, and then treated with phloretin to evaluate the molecular mechanism of lipogenesis. In another experiment, male C57BL/6 mice were fed normal diet or HFD (60% fat, w/w) for 16 weeks. After the fourth week, mice were treated with or without phloretin by intraperitoneal injection for 12 weeks. Results Phloretin significantly reduced excessive lipid accumulation and decreased sterol regulatory element-binding protein 1c, blocking the expression of fatty acid synthase in oleic acid-induced HepG2 cells. Phloretin increased Sirt1, and phosphorylation of AMP activated protein kinase to suppress acetyl-CoA carboxylase expression, reducing fatty acid synthesis in hepatocytes. Phloretin also reduced body weight and fat weight compared to untreated HFD-fed mice. Phloretin also reduced liver weight and liver lipid accumulation and improved hepatocyte steatosis in obese mice. In liver tissue from obese mice, phloretin suppressed transcription factors of lipogenesis and fatty acid synthase, and increased lipolysis and fatty acid β-oxidation. Furthermore, phloretin regulated serum leptin, adiponectin, triglyceride, low-density lipoprotein, and free fatty acid levels in obese mice. Conclusions These findings suggest that phloretin improves hepatic steatosis by regulating lipogenesis and the Sirt-1/AMPK pathway in the liver.


The Prostate ◽  
2019 ◽  
Vol 79 (8) ◽  
pp. 864-871 ◽  
Author(s):  
Xiaokun Gang ◽  
Lili Xuan ◽  
Xue Zhao ◽  
You Lv ◽  
Fei Li ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Elsa Abs ◽  
Hélène Leman ◽  
Régis Ferrière

AbstractThe decomposition of soil organic matter (SOM) is a critical process in global terrestrial ecosystems. SOM decomposition is driven by micro-organisms that cooperate by secreting costly extracellular (exo-)enzymes. This raises a fundamental puzzle: the stability of microbial decomposition in spite of its evolutionary vulnerability to “cheaters”—mutant strains that reap the benefits of cooperation while paying a lower cost. Resolving this puzzle requires a multi-scale eco-evolutionary model that captures the spatio-temporal dynamics of molecule-molecule, molecule-cell, and cell-cell interactions. The analysis of such a model reveals local extinctions, microbial dispersal, and limited soil diffusivity as key factors of the evolutionary stability of microbial decomposition. At the scale of whole-ecosystem function, soil diffusivity influences the evolution of exo-enzyme production, which feeds back to the average SOM decomposition rate and stock. Microbial adaptive evolution may thus be an important factor in the response of soil carbon fluxes to global environmental change.


Sign in / Sign up

Export Citation Format

Share Document