Extraction of volatile and non-volatile components from custard apple seed powder using supercritical CO2 extraction system and its inventory analysis

2021 ◽  
Vol 100 ◽  
pp. 224-230
Author(s):  
Dhanashree Panadare ◽  
Grisha Dialani ◽  
Virendra Rathod
Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 918
Author(s):  
Nóra Emilia Nagybákay ◽  
Michail Syrpas ◽  
Vaiva Vilimaitė ◽  
Laura Tamkutė ◽  
Audrius Pukalskas ◽  
...  

The article presents the optimization of supercritical CO2 extraction (SFE-CO2) parameters using response surface methodology (RSM) with central composite design (CCD) in order to produce single variety hop (cv. Ella) extracts with high yield and strong in vitro antioxidant properties. Optimized SFE-CO2 (37 MPa, 43 °C, 80 min) yielded 26.3 g/100 g pellets of lipophilic fraction. This extract was rich in biologically active α- and β-bitter acids (522.8 and 345.0 mg/g extract, respectively), and exerted 1481 mg TE/g extract in vitro oxygen radical absorbance capacity (ORAC). Up to ~3-fold higher extraction yield, antioxidant recovery (389.8 mg TE/g pellets) and exhaustive bitter acid extraction (228.4 mg/g pellets) were achieved under the significantly shorter time compared to the commercially used one-stage SFE-CO2 at 10–15 MPa and 40 °C. Total carotenoid and chlorophyll content was negligible, amounting to <0.04% of the total extract mass. Fruity, herbal, spicy and woody odor of extracts could be attributed to the major identified volatiles, namely β-pinene, β-myrcene, β-humulene, α-humulene, α-selinene and methyl-4-decenoate. Rich in valuable bioactive constituents and flavor compounds, cv. Ella hop SFE-CO2 extracts could find multipurpose applications in food, pharmaceutical, nutraceutical and cosmetics industries.


2021 ◽  
Vol 46 ◽  
pp. 101458
Author(s):  
Adil Mouahid ◽  
Isabelle Bombarda ◽  
Magalie Claeys-Bruno ◽  
Sandrine Amat ◽  
Emmanuelle Myotte ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 684
Author(s):  
Andrea Ruiu ◽  
Bernhard Bauer-Siebenlist ◽  
Marin Senila ◽  
W. S. Jennifer Li ◽  
Karine Seaudeau-Pirouley ◽  
...  

Precious metals, in particular Pd, have a wide range of applications in industry. Due to their scarcity, precious metals have to be recycled, preferably with green and energy-saving recycling processes. In this article, palladium extraction from an aluminosilicate-supported catalyst, containing about 2 wt% (weight%) of Pd (100% PdO), with supercritical CO2 (scCO2) assisted by complexing polymers is described. Two polymers, p(FDA)SH homopolymer and p(FDA-co-DPPS) copolymer (FDA: 1,1,2,2-tetrahydroperfluorodecyl acrylate; DPPS: 4-(diphenylphosphino)styrene), were tested with regards to their ability to extract palladium. Both polymers showed relatively low extraction conversions of approximately 18% and 30%, respectively. However, the addition of piperidine as activator for p(FDA-co-DPPS) allowed for an increase in the extraction conversion of up to 60%.


2019 ◽  
Vol 147 ◽  
pp. 162-171 ◽  
Author(s):  
Caroline Sielfeld ◽  
José M. del Valle ◽  
Federico Sastre

Sign in / Sign up

Export Citation Format

Share Document