Whole-cell catalytic synthesis of 2-O-α-glucopyranosyl-l-ascorbic acid by sucrose phosphorylase from Bifidobacterium breve via a batch-feeding strategy

2022 ◽  
Vol 112 ◽  
pp. 27-34
Author(s):  
Yaoyao Zhou ◽  
Tian Gan ◽  
Ruini Jiang ◽  
Hanchi Chen ◽  
Zhi Ma ◽  
...  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Katharina N. Schwaiger ◽  
Monika Cserjan-Puschmann ◽  
Gerald Striedner ◽  
Bernd Nidetzky

Abstract Background Glucosylglycerol (2-O-α-d-glucosyl-sn-glycerol; GG) is a natural osmolyte from bacteria and plants. It has promising applications as cosmetic and food-and-feed ingredient. Due to its natural scarcity, GG must be prepared through dedicated synthesis, and an industrial bioprocess for GG production has been implemented. This process uses sucrose phosphorylase (SucP)-catalyzed glycosylation of glycerol from sucrose, applying the isolated enzyme in immobilized form. A whole cell-based enzyme formulation might constitute an advanced catalyst for GG production. Here, recombinant production in Escherichia coli BL21(DE3) was compared systematically for the SucPs from Leuconostoc mesenteroides (LmSucP) and Bifidobacterium adolescentis (BaSucP) with the purpose of whole cell catalyst development. Results Expression from pQE30 and pET21 plasmids in E. coli BL21(DE3) gave recombinant protein at 40–50% share of total intracellular protein, with the monomeric LmSucP mostly soluble (≥ 80%) and the homodimeric BaSucP more prominently insoluble (~ 40%). The cell lysate specific activity of LmSucP was 2.8-fold (pET21; 70 ± 24 U/mg; N = 5) and 1.4-fold (pQE30; 54 ± 9 U/mg, N = 5) higher than that of BaSucP. Synthesis reactions revealed LmSucP was more regio-selective for glycerol glycosylation (~ 88%; position O2 compared to O1) than BaSucP (~ 66%), thus identifying LmSucP as the enzyme of choice for GG production. Fed-batch bioreactor cultivations at controlled low specific growth rate (µ = 0.05 h−1; 28 °C) for LmSucP production (pET21) yielded ~ 40 g cell dry mass (CDM)/L with an activity of 2.0 × 104 U/g CDM, corresponding to 39 U/mg protein. The same production from the pQE30 plasmid gave a lower yield of 6.5 × 103 U/g CDM, equivalent to 13 U/mg. A single freeze–thaw cycle exposed ~ 70% of the intracellular enzyme activity for GG production (~ 65 g/L, ~ 90% yield from sucrose), without releasing it from the cells during the reaction. Conclusions Compared to BaSucP, LmSucP is preferred for regio-selective GG production. Expression from pET21 and pQE30 plasmids enables high-yield bioreactor production of the enzyme as a whole cell catalyst. The freeze–thaw treated cells represent a highly active, solid formulation of the LmSucP for practical synthesis.


2019 ◽  
Vol 305 ◽  
pp. 27-34
Author(s):  
Yan Li ◽  
Zheng Li ◽  
Xiaoying He ◽  
Liangliang Chen ◽  
Yinchu Cheng ◽  
...  

1999 ◽  
Vol 82 (1) ◽  
pp. 508-511 ◽  
Author(s):  
Katrin Bittner ◽  
Wolfgang Müller

Membrane-permeable arachidonic acid (AA) is liberated in a Ca2+-dependent way inside cells. By using whole cell patch clamp we show that intracellular AA (1 pM) selectively reduces I A in rat hippocampal neurons, whereas extracellular application requires a 106-fold concentration. The nonmetabolized AA analogue ETYA mimics the effect of AA that is blocked by ascorbic acid or intracellular glutathione, suggesting an intracellular oxidative mechanism. We conclude that intracellular AA is extremely potent in reducing I A by an oxidative mechanism, particularly during oxidative stress.


2019 ◽  
Vol 46 (6) ◽  
pp. 759-767 ◽  
Author(s):  
Linjiang Zhu ◽  
Dan Jiang ◽  
Yaoyao Zhou ◽  
Yuele Lu ◽  
Yongxian Fan ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Negar Mozaheb ◽  
Ehsan Arefian ◽  
Mohammad Ali Amoozegar

Abstract The major signaling pathway in human cells is related to the antioxidant defense system. The main component of this system is a transcription factor, Nuclear Factor Erythroid 2-Related Factor 2 (NRF2). It regulates this system in different cellular situations under stimulation by oxidative stress or antioxidants. Thus, detecting the stimulation of NRF2 via a screening strategy may enable us to discover stimulating agents of NRF2-related signaling pathway. With this in mind, we designed a whole cell bioreporter containing the NRF2 response elements that are inserted in a luciferase vector, immediately upstream of a luciferase gene whose promoter has been removed. This bioreporter is activated by stimulators such as 3H-1,2-dithiole-3-thione (D3T), butyl hydroxyanisole (BHA) and ascorbic acid reacting as antioxidant agents. It was observed that the regulatory region of the NRF2 gene, which is identified by NRF2 protein, is located inside its coding region. This designed bioreporter can detect the presence of antioxidant agents. It also exhibits a significant linear correlation over different doses of these agents ranging from 0.8 to 80 μM for ascorbic acid, 0.1 to 100 μM for D3T, and 0.1 to 100 μM for BHA. This detection system is proven to be more sensitive than Real-time PCR, suggesting it to be a highly sensitive system among the available methods.


Sign in / Sign up

Export Citation Format

Share Document