scholarly journals Cloning and Sequencing of Haloacid Dehalogenase Gene from Klebsiella Pneumoniae ITB1

2015 ◽  
Vol 16 ◽  
pp. 121-128
Author(s):  
Candra Yulius Tahya ◽  
Enny Ratnaningsih
2018 ◽  
Vol 22 (1) ◽  
pp. 1
Author(s):  
Ridani Rino Anggoro ◽  
Enny Ratnaningsih

Organohalogen compounds are widely used industrially and agriculturally, as well as in households as flame retardants and refrigerants. However, these compounds can become significant pollutants through their accidental or deliberate release into the environment in large quantities. Dehalogenase is an enzyme with the potential to be used in the removal of organohalogen contaminants. A previous study successfully subcloned a 690 bp of haloacid dehalogenase gene (hakp1) from Klebsiella pneumoniae ITB1 into a pET-30a(+) expression system to achieve high enzyme productivity. IPTG was used as an inducer to express a pET-hakp1 recombinant clone in Escherichia coli BL21 (DE3). The molecular mass of the haloacid dehalogenase Hakp1 protein was 30 kDa as determined by SDS-PAGE. Zymogram analysis showed that this recombinant protein has dehalogenase activity as shown by the formation of AgCl white precipitate. A quantitative assay of haloacid dehalogenase Hakp1 gave a specific activity of 84.29 U/mg with the optimum temperature of 40°C at pH 9. Predicted three-dimensional structure of Hakp1 showed α/β motif folding which comprised of cap and core domain. The predicted active sites of Hakp1 were Asp8, Glu10, Leu22, Phe23, Trp90, Ser125, Ser126, Lys159, and Asp184 with Asp8, Glu10, Ser126, and Lys159 act as binding residue. This recombinant haloacid dehalogenase clone provides an alternative agent for effective bioremediation of organohalogen pollutants.


1998 ◽  
Vol 42 (7) ◽  
pp. 1671-1676 ◽  
Author(s):  
Youjun Yang ◽  
Niraja Bhachech ◽  
Patricia A. Bradford ◽  
Bradley D. Jett ◽  
Daniel F. Sahm ◽  
...  

ABSTRACT Ceftazidime-resistant Escherichia coli andKlebsiella pneumoniae (49 and 102 isolates, respectively) were collected from Barnes-Jewish Hospital, St. Louis, Mo., from 1992 to 1996. They were uniformly resistant to ceftazidime, generally resistant to aztreonam, and variably susceptible to cefotaxime. Four representative E. coli strains and 15Klebsiella strains were examined. From one to four β-lactamases were produced per strain, with three possible enzymes related to ceftazidime resistance: enzymes with pI values of 5.6, 6.1, or 7.6. By pulsed-field gel electrophoresis there were at least 13 different Klebsiella strain types and 3 different E. coli strain types, indicating that the outbreak was not clonal. After cloning and sequencing of the β-lactamase-encoding genes, the enzyme with a pI of 5.6 was identified as TEM-10. The enzyme with a pI of 6.1 was a novel TEM variant (TEM-43) with Lys at 104, His at 164, and Thr at 182. TEM-43 showed broad-spectrum hydrolytic activity against all penicillins, with the highest hydrolysis rate for ceftazidime compared to those for the other expanded-spectrum cephalosporins. Aztreonam was also a good substrate for TEM-43, with hydrolytic activity similar to that of ceftazidime and affinity higher than that of ceftazidime. The TEM-43 β-lactamase was well inhibited by clavulanic acid and tazobactam at concentrations of <10 nM. Sulbactam was less effective than the other inhibitors. The Thr182 mutation previously reported in an inhibitor-resistant β-lactamase did not cause the TEM-43 enzyme to become resistant to any of the inhibitors.


1994 ◽  
Vol 58 (1) ◽  
pp. 160-163 ◽  
Author(s):  
Haruhiko Kawasaki ◽  
Tohru Toyama ◽  
Takuya Maeda ◽  
Humiko Nishino ◽  
Kenzo Tonomura

2005 ◽  
Vol 49 (4) ◽  
pp. 1567-1571 ◽  
Author(s):  
Antonio Oliver ◽  
Teresa M. Coque ◽  
Diana Alonso ◽  
Aránzazu Valverde ◽  
Fernando Baquero ◽  
...  

ABSTRACT CTX-M-10 has been widely disseminated among multiple clones of several species of Enterobacteriaceae, harboring seemingly different plasmids, for over a decade in Ramón y Cajal University Hospital, Madrid, Spain. Cloning and sequencing of a 12.2-kb DNA fragment from plasmid pRYCE21 from Klebsiella pneumoniae strain KP4aC revealed a novel phage-related element immediately upstream of bla CTX-M-10 conserved among different CTX-M-10-producing strains. This is the first report showing an extended-spectrum-β-lactamase gene linked to a phage-related element.


2021 ◽  
Vol 24 (5) ◽  
pp. 161-169
Author(s):  
Enny Ratnaningsih ◽  
Lousiana Dwinta Utami ◽  
Nurlaida Nurlaida ◽  
Rindia Maharani Putri

Organohalogens are widely utilized as pesticides, herbicides, solvents, and for many other industrial purposes. However, the use of these compounds caused some negative impacts to the environment due to their toxicity and persistency. In the light of this, some microbes have been identified and employed to perform dehalogenation, converting halogenated organic compounds to non-toxic materials. In this research, we successfully cloned and sequenced the haloacid dehalogenase gene from a local Pseudomonas aeruginosa ITB1 strain, which is involved in the degradation of monochloroacetate. First, the haloacid dehalogenase gene was amplified by PCR using a pair of primers designed from the same gene sequences of other P. aeruginosa strains available in the GenBank. The cloned gene in pGEM-T in E. coli TOP10 was sequenced, analyzed, and then sub-cloned into pET-30a(+) for expression in E. coli BL21 (DE3). To facilitate direct sub-cloning, restriction sequences of EcoRI (G/AATTC) and HindIII (A/AGCTT) were added to the forward and reversed primers, respectively. The expressed protein in E. coli BL21 (DE3) appeared as a 26-kDa protein in SDS-PAGE analysis, which is in good agreement with the size predicted by ExPASy Protparam. We obtained that the best expression in LB liquid medium was achieved with 0.01 mM IPTG induction at 30°C incubation for 3 hours. We also found that the enzyme is more concentrated in the pellet cells as inclusion bodies. Furthermore, the in-silico analysis revealed that this enzyme consists of 233 amino acid residues. This enzyme’s predicted tertiary structure shows six β-sheets flanked by α-helixes and thus belongs to Group II haloacid dehalogenase. Based on the structural prediction, amino acid residues of Asp7, Ser121, and Asn122 are present in the active site and might play essential roles in catalysis. The presented study laid the foundation for recombinant haloacid dehalogenase production from P. aeruginosa local strains. It provided an insight into the utilization of recombinant local strains to remediate environmental problems caused by organohalogens.


2021 ◽  
Vol 10 (4) ◽  
pp. 857-863
Author(s):  
Enny Ratnaningsih ◽  
Rachmad Ade ◽  
Rindia Maharani Putri ◽  
Idris Idris

In recent years, attention to microbial dehalogenase has continually increased due to its potential application, both in bioremediation and in the biosynthesis of fine chemicals. Many microbial recombinant strains carrying dehalogenase gene have been developed, particularly to increase the dehalogenase production and its quality. In this study, we aimed to find the optimum condition for the production of active haloacid dehalogenase by E. coli BL21 (DE3) harboring recombinant plasmid pET-bcfd1 that carried haloacid dehalogenase gene from Bacillus cereus IndB1 local strain. This would be examined by assessing the ability of whole cell life culture to degrade monochloroacetic acid (MCA) and quantifying the chloride ion released into the medium. Several variables were evaluated to find this optimal condition. We found that the best condition for MCA biodegradation using this recombinant clone was at 0.2 mM MCA, 10 μM of isopropyl β-D-1-thiogalactopyranoside (IPTG), 6 hours of pre-induction incubation at 37ºC with shaking, 2 hours IPTG induction at 30ºC with shaking, at pH 7 in Luria Bertani (LB) liquid medium without NaCl, which produced about 0.056 mM chloride ions. Inducer concentration, pre-induction incubation time and temperature, as well as induction time and temperature were apparent to be associated with the expression of the protein, while the MCA concentration and the pH of the medium influenced the ability of the recombinant E. coli BL21 (DE3)/pET-bcfd1 to grow in toxic environment. Our findings laid the foundation for exploration of dehalogenases from local Bacillus strains through genetic engineering for MCA biodegradation


Sign in / Sign up

Export Citation Format

Share Document