scholarly journals Experimental investigation into the surface integrity and tribological property of AISI 1045 steel specimen for barrel finishing

Procedia CIRP ◽  
2018 ◽  
Vol 71 ◽  
pp. 47-52 ◽  
Author(s):  
Xiuhong Li ◽  
Wenhui Li ◽  
Shengqiang Yang ◽  
Huiting Shi
2008 ◽  
Vol 375-376 ◽  
pp. 411-415
Author(s):  
Feng Lei Li ◽  
Wei Xia ◽  
Zhao Yao Zhou ◽  
Tian Zhang

Burnishing, an ultra-precision superficial plastic deformation process, is used increasingly as a surface enhancement finishing treatment after machining operations not only to give a mirror-like and work-hardened surface but also to impose favorable compressive residual stress in it. To analyze the feasibility of turning-burnishing hybrid process, the Taguchi’s L27(313) orthogonal array method with the analysis of variance (ANOVA) were used to analyze the influence of the initial turning process on surface integrity of roller burnished AISI 1045 steel such as surface roughness, surface microhardness. three turning parameters, namely the cutting feed, cutting depth and cutting speed, three burnishing parameters, namely the burnishing feed, burnishing depth and burnishing speed were selected as the experimental factors in Taguchi’s design of experiments to determine which one has the dominant influence and how it works on burnishing effects, namely the surface roughness and surface microhardness, the interactions between cutting feed, burnishing feed and burnishing depth were considered. The experimental results agreed well with the theoretical analysis and the conclusion is cutting feed has dominant influence on burnished surface integrity.


2011 ◽  
Vol 486 ◽  
pp. 262-265
Author(s):  
Amit Kohli ◽  
Mudit Sood ◽  
Anhad Singh Chawla

The objective of the present work is to simulate surface roughness in Computer Numerical Controlled (CNC) machine by Fuzzy Modeling of AISI 1045 Steel. To develop the fuzzy model; cutting depth, feed rate and speed are taken as input process parameters. The predicted results are compared with reliable set of experimental data for the validation of fuzzy model. Based upon reliable set of experimental data by Response Surface Methodology twenty fuzzy controlled rules using triangular membership function are constructed. By intelligent model based design and control of CNC process parameters, we can enhance the product quality, decrease the product cost and maintain the competitive position of steel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eduardo da Rosa Vieira ◽  
Luciano Volcanoglo Biehl ◽  
Jorge Luis Braz Medeiros ◽  
Vagner Machado Costa ◽  
Rodrigo Jorge Macedo

AbstractQuench hardening aims at the microstructural transformation of steels in order to improve hardness and mechanical strength. The aim phase is, in most cases, the martensite. It is necessary to heat the material until it obtains its austenitization and quenching by immersion in a fluid. Currently, it is common to use watery polymeric solutions in this procedure. These fluids, which are the mixture of polymers in water, vary their thermal exchange capacity depending on the concentrations applied. The increase in concentration minimizes the removal of heat from the part, reducing the formation capacity of martensite, and developing a lower hardness and strong steel. In this work, microstructural characteristics and properties of AISI 1045 steel quenched in solutions based on polyvinylpyrrolidone (PVP) in 10, 15, 20, and 25% concentration were evaluated. The microstructural characterization quantified the percentage of the phases in each concentration, demonstrating a reduction of martensite as the concentrations were high. The investigation of the samples by x-ray diffraction confirmed the absence of austenite retained in the material. Furthermore, a microhardness scale between the core and the surface was constructed, in which a reduction gradient of the indices of this property towards the core of the sample was evidenced.


2018 ◽  
Vol 207 ◽  
pp. 02002
Author(s):  
Yaoke Wang ◽  
Meng Kou ◽  
Wei Ding ◽  
Huan Ma ◽  
Liangshan Xiong

When applying the non-parallel shear zone model to predict the cutting process parameters of carbon steel workpiece, it is found that there is a big error between the prediction results and the experimental values. And also, the former approach to obtain the relevant cutting parameters of the non-parallel shear zone model by applying coordinate transformation to the parallel shear zone model has a theoretical error – it erroneously regards the determinant (|J|) of the Jacobian matrix (J) in the coordinate transformation as a constant. The shape of the shear zone obtained when |J| is not constant is drew and it is found that the two boundaries of the shear zone are two slightly curved surfaces rather than two inclined planes. Also, the error between predicted values and experimental values of cutting force and cutting thrust is slightly smaller than that of constant |J|. A corrected model where |J| is a variable is proposed. Since the specific values of inclination of the shear zone (α, β), the thickness coefficient of the shear zone (as) and the constants related to the material (f0, p) are not given in the former work, a method to obtain the above-mentioned five constants by solving multivariable constrained optimization problem based on experimental data was also proposed; based on the obtained experimental data of AISI 1045 steel workpiece cutting force, cutting thrust, chip thickness, the results of five above-mentioned model constants are obtained. It is found that, compared with prediction from uncorrected model, the cutting force and cutting thrust of AISI 1045 steel predicted by the corrected model with the obtained constants has a better agreement with the experimental values obtained by Ivester.


1999 ◽  
Vol 338 (1-2) ◽  
pp. 177-184 ◽  
Author(s):  
Y.L. Su ◽  
S.H. Yao ◽  
C.S. Wei ◽  
W.H. Kao ◽  
C.T. Wu

Sign in / Sign up

Export Citation Format

Share Document