scholarly journals Visual Based Control Scheme for a Robotic Manipulator with Duality of Task-space Information and Friction Compensation

2014 ◽  
Vol 42 ◽  
pp. 279-286
Author(s):  
Zool H. Ismail ◽  
Ahmad A’.M. Faudzi ◽  
Matthew W. Dunnigan
Robotica ◽  
2006 ◽  
Vol 25 (1) ◽  
pp. 103-112 ◽  
Author(s):  
Mirosław Galicki

This study addresses the problem of adaptive controlling of both a nonredundant and a redundant robotic manipulator with state-dependent constraints. The task of the robot is to follow a prescribed geometric path given in the task space, by the end-effector. The aforementioned robot task has been solved on the basis of the Lyapunov stability theory, which is used to derive the control scheme. A new adaptive Jacobian controller is proposed in the paper for the path following of the robot, with both uncertain kinematics and dynamics. The numerical simulation results carried out for a planar redundant three-DOF (three degrees of freedom) manipulator whose end-effector follows a prescribed geometric path given in a two-dimensional (2D) task space, illustrate the trajectory performance of the proposed control scheme.


Author(s):  
Chun-Chung Li ◽  
Yung Ting ◽  
Yi-Hung Liu ◽  
Yi-Da Lee ◽  
Chun-Wei Chiu

A 6DOF Stewart platform using piezoelectric actuators for nanoscale positioning objective is designed. A measurement method that can directly measure the pose (position and orientation) of the end-effector is developed so that task-space on-line control is practicable. The design of a sensor holder for sensor employment, a cuboid with referenced measure points, and the computation method for obtaining the end-effector parameters is introduced. A control scheme combining feedforward and feedback is proposed. The inverse model of a hysteresis model derived by using a dynamic Preisach method is used for the feedforward control. Hybrid control to maintain both the positioning and force output for nano-cutting and nano-assembly applications is designed for the feedback controller. The optimal gain of the feedback controller is searched by using relay feedback test method and genetic algorithm. In experiment, conditions with/without external load employed with feedforward, feedback, and feedforward with feedback control schemes respectively are carried out. Performance of each control scheme verifies the capability of achieving nanoscale precision. The combined feedforward and feedback control scheme is superior to the others for gaining better precision.


Author(s):  
Haitao Liu ◽  
Tie Zhang

Sliding mode control is a very attractive control scheme with strong robustness to structured and unstructured uncertainties as well as to external disturbances. In this paper, a robust fuzzy sliding mode controller, which is combined with an adaptive fuzzy logic system, is proposed to improve the control performance of the robotic manipulator with kinematic and dynamic uncertainties. In this controller, the sliding mode control is employed to improve the control accuracy and the robustness of the robotic manipulator, and the fuzzy logic control is adopted to approximate various uncertainties and to eliminate the chattering without the help of any prior knowledge of system uncertainties. The effectiveness of the proposed controller is then verified by the simulations on a 2-DOF (degrees of freedom) robotic manipulator and the experiments on an SCARA robot with four degrees of freedom. Simulated and experimental results indicate that the proposed controller is effective in the robust tracking of the robotic manipulator with kinematic and dynamic uncertainties.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256491
Author(s):  
Khurram Ali ◽  
Adeel Mehmood ◽  
Jamshed Iqbal

Emerging applications of autonomous robots requiring stability and reliability cannot afford component failure to achieve operational objectives. Hence, identification and countermeasure of a fault is of utmost importance in mechatronics community. This research proposes a Fault-tolerant control (FTC) for a robot manipulator, which is based on a hybrid control scheme that uses an observer as well as a hardware redundancy strategy to improve the performance and efficiency in the presence of actuator and sensor faults. Considering a five Degree of Freedom (DoF) robotic manipulator, a dynamic LuGre friction model is derived which forms the basis for design of control law. For actuator’s and sensor’s FTC, an adaptive back-stepping methodology is used for fault estimation and the nominal control law is used for the controller reconfiguration and observer is designed. Fault detection is accomplished by comparing the actual and observed states, pursued by fault tolerant method using redundant sensors. The results affirm the effectiveness of the proposed FTC strategy with model-based friction compensation. Improved tracking performance as well robustness in the presence of friction and fault demonstrate the efficiency of the proposed control approach.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang Wang ◽  
Mingshu Chen ◽  
Yu Song

This paper concentrates on the predefined-time trajectory tracking for an uncertain robotic manipulator system. First, a modified predefined-time control (PTC) algorithm is proposed. Subsequently, with the help of proposed modified PTC algorithm and the nonsingular design method of terminal sliding mode, a novel nonsingular terminal sliding-mode control (NTSMC) scheme is proposed for ensuring the predefined-time convergence of tracking errors. The advantages of the newly proposed control scheme are as follows. (i) Unlike the conventional predefined-time sliding-mode control (SMC) which only guarantees the predefined-time convergence of sliding-mode surface, the proposed scheme can guarantee the predefined-time convergence of tracking errors. (ii) Compared with the conventional PTC algorithm, the proposed modified PTC algorithm can reduce the initial control peaking and enhance the precision of convergence time. The performance and effectiveness of the proposed control scheme are illustrated by comparing with the existing methods.


Author(s):  
J. Rastegar ◽  
J. R. Singh

Abstract A probabilistic method for optimal placement of a prescribed task space in the workspace of a robotic manipulator is presented. Velocity and force transmission (alone and in combination) are used as optimality criteria. Complex task space and manipulator workspace geometries are readily handled. The distribution of the tasks within the task space, and the velocity and force transmission requirements may assume any arbitrary form. The method is extremely simple, does not require inverse calculations, is numerical in nature, and is readily implemented on computers. In many cases, the best location of the task space within the manipulator workspace can be visually ascertained. Minimal analytical formulations are required. Several examples are presented.


Sign in / Sign up

Export Citation Format

Share Document