scholarly journals Solving optimization problems in the fifth generation of cellular networks by using meta-heuristics approaches

2021 ◽  
Vol 182 ◽  
pp. 56-62
Author(s):  
Dalila Boughaci
2019 ◽  
Author(s):  
André Fernandes ◽  
Fabricio De Souza Farias ◽  
Aline Ohashi ◽  
Marcos Oliveira ◽  
João Crisostomo Weyl Albuquerque Costa

Fifth generation (5G) cellular networks will be the key element of a society that is becoming increasingly interconnected and digitalized. Applications adopted in many social and industrial sectors will require from 5G networks higher standards of availability and reliability. These requirements are leading operators to plan the deployment of protection schemes in the backhaul layer. In this context, our aim is to employ simulation to assess in a technical and economic way different backhaul protection schemes based on passive optical network (PON). The results indicate that the use of protection can increase the viability of 5G networks based on a PON backhaul supporting a hybrid fronthaul with fiber and copper.


Author(s):  
Giuseppe Araniti ◽  
Massimo Condoluci ◽  
Sara Pizzi ◽  
Antonella Molinaro

In recent years, mobile operators are observing a growing demand of multicast services over radio cellular networks. In this scenario, multicasting is the technology exploited to serve a group of users who simultaneously request the same data content. Since multicast applications are expected to be massively exchanged over the forthcoming fifth generation (5G) systems, the third-generation partnership project (3GPP) defined the multimedia broadcast multicast service (MBMS) standard. MBMS supports multicast services over long-term evolution (LTE), and the 4G wireless technology provides high quality services in mobile environments. Nevertheless, several issues related to the management of MBMS services together with more traditional unicast services are still open. The aim of this chapter is to analyze the main challenges in supporting heterogeneous traffic over LTE with particular attention to resource management, considered as the key aspect for an effective provisioning of mobile multimedia services over cellular networks.


Author(s):  
Philip Branch

In this article the emerging requirements that are driving the fifth generation of mobile cellular networks are discussed and the technologies that will most likely be used to satisfy those requirements are identified. Proposals for 5G are at an early stage, but there is an expectation that the early 2020s will see the first deployments.The requirements for 5G are increased download speeds, the need to deal with increased cell density, increased bandwidth efficiency and availability of new bandwidth. It is likely that 5G will play a role in the emerging Internet of Things, potentially resulting in enormous increase in the number of attached devices.To meet the expected requirements 5G is likely to make use of spectrum in the millimetre range, beam-forming antenna arrays, massive Multi-Input Multi-Output, and fundamental changes to base station design. In this paper the key drivers for 5G are discussed including the very large numbers of devices in cells, the need to make available new spectrum, energy efficient ways of implementing base station capabilities, standards developments so far and 5G related issues for Australia.


2019 ◽  
Vol 7 (2) ◽  
pp. 28-32
Author(s):  
Ekaterina Otsetova-Dudin ◽  

Mobile cellular networks are an indispensable part of modern life, where the need for customer satisfaction in the use of many different services by consumers is constantly increasing. The requirements for higher transmission speed, lossless transmission, reliability, efficiency, low latency, mass connectivity, guarantee of high Quality of Service criteria are repeatedly increasing. All this requires the continuous development of the used technologies as well as the introduction of new generations of networks. Handover mechanism is extremely important in cellular network because of the cellular architecture employed to maximize spectrum utilization. To ensure the quality of service in wireless cellular networks, the report proposes the use of a Horizontal Handoff Priority Scheme. Simulation experiments have been carried out, the probability parameters of the scheme have been evaluated and the probabilities of losses occurrence have been classified as rare events. The proposed material are various algorithms and techniques for the implementation of Vertical and Horizontal Handoff in 3G, 4G and fifth-generation networks to provide the required QoS for mobile users with Ultra-High Definition.


2020 ◽  
Vol 10 (18) ◽  
pp. 6145
Author(s):  
Fawad Ahmad ◽  
Ayaz Ahmad ◽  
Irshad Hussain ◽  
Peerapong Uthansakul ◽  
Suleman Khan

The limited caching capacity of the local cache enabled Base station (BS) decreases the cache hit ratio (CHR) and user satisfaction ratio (USR). However, Cache enabled multi-tier cellular networks have been presented as a promising candidate for fifth generation networks to achieve higher CHR and USR through densification of networks. In addition to this, the cooperation among the BSs of various tiers for cached data transfer, intensify its significance many folds. Therefore, in this paper, we consider maximization of CHR and USR in a multi-tier cellular network. We formulate a CHR and USR problem for multi-tier cellular networks while putting major constraints on caching space of BSs of each tier. The unsupervised learning algorithms such as K-mean clustering and collaborative filtering have been used for clustering the similar BSs in each tier and estimating the content popularity respectively. A novel scheme such as cluster average popularity based collaborative filtering (CAP-CF) algorithm is employed to cache popular data and hence maximizing the CHR in each tier. Similarly, two novel methods such as intra-tier and cross-tier cooperation (ITCTC) and modified ITCTC algorithms have been employed in order to optimize the USR. Simulations results witness, that the proposed schemes yield significant performance in terms of average cache hit ratio and user satisfaction ratio compared to other conventional approaches.


Sign in / Sign up

Export Citation Format

Share Document