scholarly journals Comparison of MODIS aerosol optical depth retrievals with ground-based measurements in the tropics

2012 ◽  
Vol 32 ◽  
pp. 392-398 ◽  
Author(s):  
T. Jantarach ◽  
I. Masiri ◽  
S. Janjai
2017 ◽  
Author(s):  
Quentin Bourgeois ◽  
Annica M. L. Ekman ◽  
Jean-Baptiste Renard ◽  
Radovan Krejci ◽  
Abhay Devasthale ◽  
...  

Abstract. The global aerosol extinction from the CALIOP space lidar was used to compute aerosol optical depth (AOD) over a nine-year period (2007–2015) and partitioned between the boundary layer (BL) and the free troposphere (FT) using BL heights obtained from the ERA-Interim archive. The results show that the vertical distribution of AOD does not follow the diurnal cycle of the BL but remains similar between day and night highlighting the presence of a residual layer during night. The BL and FT contribute 69 % and 31 %, respectively, to the global tropospheric AOD during daytime in line with observations obtained using the Light Optical Aerosol Counter (LOAC) instrument. The FT AOD contribution is larger in the tropics than at mid-latitudes which indicates that convective transport largely controls the vertical profile of aerosols. Over oceans, the FT AOD contribution is mainly governed by long-range transport of aerosols from emission sources located within neighboring continents. According to the CALIOP aerosol classification, dust and smoke particles are the main aerosol types transported into the FT. Overall, the study shows that the fraction of AOD in the FT – and thus potentially located above low-level clouds – is substantial and deserves more attention when evaluating the radiative effect of aerosols in climate models. More generally, the results have implications for process determining the overall budgets, sources, sinks and transport of aerosol particles and their description in atmospheric models.


Science ◽  
2021 ◽  
Vol 371 (6535) ◽  
pp. 1269-1274
Author(s):  
Eitan Hirsch ◽  
Ilan Koren

The early months of 2020 showed record-breaking levels of aerosol optical depth (AOD) over the Southern Hemisphere (SH). Apart from the tropics, monthly AOD values over most of the SH exceeded the average by more than three standard deviations. This anomalous AOD is attributed to a combination of the intensity and location of the Australian bushfires. The fires took place south enough, where the tropopause altitude is relatively low, within the mid-latitude cyclone belt. This location allowed for deep convection over and downwind of the fires, which transported the smoke to the stratosphere, where its lifetime is an order of magnitude longer than it would have been in the lower atmosphere. The lower bound of the stratospheric smoke mass in January 2020 was ~2.1 ± 1 teragrams, which lead to cooling by more than 1.0 ± 0.6 watts per square meter over cloud-free oceanic areas.


2018 ◽  
Vol 18 (10) ◽  
pp. 7709-7720 ◽  
Author(s):  
Quentin Bourgeois ◽  
Annica M. L. Ekman ◽  
Jean-Baptiste Renard ◽  
Radovan Krejci ◽  
Abhay Devasthale ◽  
...  

Abstract. The global aerosol extinction from the CALIOP space lidar was used to compute aerosol optical depth (AOD) over a 9-year period (2007–2015) and partitioned between the boundary layer (BL) and the free troposphere (FT) using BL heights obtained from the ERA-Interim archive. The results show that the vertical distribution of AOD does not follow the diurnal cycle of the BL but remains similar between day and night highlighting the presence of a residual layer during night. The BL and FT contribute 69 and 31 %, respectively, to the global tropospheric AOD during daytime in line with observations obtained in Aire sur l'Adour (France) using the Light Optical Aerosol Counter (LOAC) instrument. The FT AOD contribution is larger in the tropics than at mid-latitudes which indicates that convective transport largely controls the vertical profile of aerosols. Over oceans, the FT AOD contribution is mainly governed by long-range transport of aerosols from emission sources located within neighboring continents. According to the CALIOP aerosol classification, dust and smoke particles are the main aerosol types transported into the FT. Overall, the study shows that the fraction of AOD in the FT – and thus potentially located above low-level clouds – is substantial and deserves more attention when evaluating the radiative effect of aerosols in climate models. More generally, the results have implications for processes determining the overall budgets, sources, sinks and transport of aerosol particles and their description in atmospheric models.


2021 ◽  
Vol 13 (9) ◽  
pp. 4407-4423
Author(s):  
Juan-Carlos Antuña-Marrero ◽  
Graham W. Mann ◽  
John Barnes ◽  
Albeht Rodríguez-Vega ◽  
Sarah Shallcross ◽  
...  

Abstract. We report the recovery and processing methodology of the first ever multi-year lidar dataset of the stratospheric aerosol layer. A Q-switched ruby lidar measured 66 vertical profiles of 694 nm attenuated backscatter at Lexington, Massachusetts, between January 1964 and August 1965, with an additional nine profile measurements conducted from College, Alaska, during July and August 1964. We describe the processing of the recovered lidar backscattering ratio profiles to produce mid-visible (532 nm) stratospheric aerosol extinction profiles (sAEP532) and stratospheric aerosol optical depth (sAOD532) measurements, utilizing a number of contemporary measurements of several different atmospheric variables. Stratospheric soundings of temperature and pressure generate an accurate local molecular backscattering profile, with nearby ozone soundings determining the ozone absorption, which are used to correct for two-way ozone transmittance. Two-way aerosol transmittance corrections are also applied based on nearby observations of total aerosol optical depth (across the troposphere and stratosphere) from sun photometer measurements. We show that accounting for these two-way transmittance effects substantially increases the magnitude of the 1964/1965 stratospheric aerosol layer's optical thickness in the Northern Hemisphere mid-latitudes, then ∼ 50 % larger than represented in the Coupled Model Intercomparison Project 6 (CMIP6) volcanic forcing dataset. Compared to the uncorrected dataset, the combined transmittance correction increases the sAOD532 by up to 66 % for Lexington and up to 27 % for Fairbanks, as well as individual sAEP532 adjustments of similar magnitude. Comparisons with the few contemporary measurements available show better agreement with the corrected two-way transmittance values. Within the January 1964 to August 1965 measurement time span, the corrected Lexington sAOD532 time series is substantially above 0.05 in three distinct periods, October 1964, March 1965, and May–June 1965, whereas the 6 nights the lidar measured in December 1964 and January 1965 had sAOD values of at most ∼ 0.03. The comparison with interactive stratospheric aerosol model simulations of the Agung aerosol cloud shows that, although substantial variation in mid-latitude sAOD532 are expected from the seasonal cycle in the stratospheric circulation, the Agung cloud's dispersion from the tropics would have been at its strongest in winter and weakest in summer. The increasing trend in sAOD from January to July 1965, also considering the large variability, suggests that the observed variations are from a different source than Agung, possibly from one or both of the two eruptions that occurred in 1964/1965 with a Volcanic Explosivity Index (VEI) of 3: Trident, Alaska, and Vestmannaeyjar, Heimaey, south of Iceland. A detailed error analysis of the uncertainties in each of the variables involved in the processing chain was conducted. Relative errors for the uncorrected sAEP532 were 54 % for Fairbanks and 44 % Lexington. For the corrected sAEP532 the errors were 61 % and 64 %, respectively. The analysis of the uncertainties identified variables that with additional data recovery and reprocessing could reduce these relative error levels. Data described in this work are available at https://doi.org/10.1594/PANGAEA.922105 (Antuña-Marrero et al., 2020a).


2020 ◽  
Vol 16 (1) ◽  
pp. 1-14
Author(s):  
Monim Jiboori ◽  
Nadia Abed ◽  
Mohamed Abdel Wahab

Tellus B ◽  
2006 ◽  
Vol 58 (3) ◽  
Author(s):  
Carlos Toledano ◽  
Victoria Cachorro ◽  
Alberto Berjón ◽  
Mar Sorribas ◽  
Ricardo Vergaz ◽  
...  

2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Yaseen Kadhim Abbas Al-Timimi ◽  
Ali Challob Khraibet

Aerosol Optical Depth (AOD) is the measure of aerosol distributed with a Column of air from earth’s surface to the top of atmosphere, in this study, temperature variation of aerosol optical depth (AOD) in Baghdad was analyzed Moderate Resolution Imaging Spectrometer (MODIS) from Terra and its relationship with temperature for the period 2003 – 2015 were examined. The highest values for mean seasonal AOD were observed in spring and summer and the maximum AOD values ranged from 0.50 to 0.58 by contrast minimum AOD values ranging from 0.30 to 0.41 were found in winter and autumn. Results of study also showed that the temperature (max., min., mean air temperature and DTR) have a strong correlation with AOD (0.82, 0.83, 0.82 and 0.65) respectively.


Sign in / Sign up

Export Citation Format

Share Document