Impact of aerosol on air temperature in Baghdad

2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Yaseen Kadhim Abbas Al-Timimi ◽  
Ali Challob Khraibet

Aerosol Optical Depth (AOD) is the measure of aerosol distributed with a Column of air from earth’s surface to the top of atmosphere, in this study, temperature variation of aerosol optical depth (AOD) in Baghdad was analyzed Moderate Resolution Imaging Spectrometer (MODIS) from Terra and its relationship with temperature for the period 2003 – 2015 were examined. The highest values for mean seasonal AOD were observed in spring and summer and the maximum AOD values ranged from 0.50 to 0.58 by contrast minimum AOD values ranging from 0.30 to 0.41 were found in winter and autumn. Results of study also showed that the temperature (max., min., mean air temperature and DTR) have a strong correlation with AOD (0.82, 0.83, 0.82 and 0.65) respectively.

2012 ◽  
Vol 5 (2) ◽  
pp. 2169-2220 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
M.-J. Jeong ◽  
B. N. Holben ◽  
...  

Abstract. This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-yr (1997–2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where SeaWiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record is suitable for quantitative scientific use.


2012 ◽  
Vol 5 (7) ◽  
pp. 1761-1778 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
M.-J. Jeong ◽  
B. N. Holben ◽  
...  

Abstract. This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-yr (1997–2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where SeaWiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record is suitable for quantitative scientific use.


2020 ◽  
Vol 12 (7) ◽  
pp. 1102
Author(s):  
Bin Zou ◽  
Ning Liu ◽  
Wei Wang ◽  
Huihui Feng ◽  
Xiangping Liu ◽  
...  

Current reported spatiotemporal solutions for fusing multisensor aerosol optical depth (AOD) products used to recover gaps either suffer from unacceptable accuracy levels, i.e., fixed rank smooth (FRS), or high time costs, i.e., Bayesian maximum entropy (BME). This problem is generally more serious when dealing with multiple AOD products in a long time series or over large geographic areas. This study proposes a new, effective, and efficient enhanced FRS method (FRS-EE) to fuse satellite AOD products with uncertainty constraints. AOD products used in the fusion experiment include Moderate Resolution Imaging SpectroRadiometer (MODIS) DB/DT_DB_Combined AOD and Multiangle Imaging SpectroRadiometer (MISR) AOD across mainland China from 2016 to 2017. Results show that the average completeness of original, initial FRS fused, and FRS-EE fused AODs with uncertainty constraints are 22.80%, 95.18%, and 65.84%, respectively. Although the correlation coefficient (R = 0.77), root mean square error (RMSE = 0.30), and mean bias (Bias = 0.023) of the initial FRS fused AODs are relatively lower than those of original AODs compared to Aerosol Robotic Network (AERONET) AOD records, the accuracy of FRS-EE fused AODs, which are R = 0.88, RMSE = 0.20, and Bias = 0.022, is obviously improved. More importantly, in regions with fully missing original AODs, the accuracy of FRS-EE fused AODs is close to that of original AODs in regions with valid retrievals. Meanwhile, the time cost of FRS-EE for AOD fusion was only 2.91 h; obviously lower than the 30.46 months taken for BME.


2020 ◽  
Vol 12 (12) ◽  
pp. 1985 ◽  
Author(s):  
Sundar Christopher ◽  
Pawan Gupta

Using a combined Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) mid-visible aerosol optical depth (AOD) product at 0.1 × 0.1-degree spatial resolution and collocated surface PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) monitors, we provide a global five-year (2015–2019) assessment of the spatial and seasonal AOD–PM2.5 relationships of slope, intercepts, and correlation coefficients. Only data from ground monitors accessible through an open air-quality portal that are available to the worldwide community for air quality research and decision making are used in this study. These statistics that are reported 1 × 1-degree resolution are important since satellite AOD is often used in conjunction with spatially limited surface PM2.5 monitors to estimate global distributions of surface particulate matter concentrations. Results indicate that more than 3000 ground monitors are now available for PM2.5 studies. While there is a large spread in correlation coefficients between AOD and PM2.5, globally, averaged over all seasons, the correlation coefficient is 0.55 with a unit AOD producing 54 μgm−3 of PM2.5 (Slope) with an intercept of 8 μgm−3. While the number of surface PM2.5 measurements has increased by a factor of 10 over the last decade, a concerted effort is still needed to continue to increase these monitors in areas that have no surface monitors, especially in large population centers that will further leverage the strengths of satellite data.


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 430 ◽  
Author(s):  
Tamás Várnai ◽  
Alexander Marshak

This paper presents an overview of our efforts to characterize and better understand cloud-related changes in aerosol properties. These efforts primarily involved the statistical analysis of global or regional datasets of Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol and cloud observations. The results show that in oceanic regions, more than half of all aerosol measurements by passive satellite instruments come from near-cloud areas, where clouds and cloud-related processes may significantly modify aerosol optical depth and particle size. Aerosol optical depth is also shown to increase systematically with regional cloud amount throughout the Earth. In contrast, it is shown that effective particle size can either increase or decrease with increasing cloud cover. In bimodal aerosol populations, the sign of changes depends on whether coarse mode or small mode aerosols are most affected by clouds. The results also indicate that over large parts of Earth, undetected cloud particles are not the dominant reason for the satellite-observed changes with cloud amount, and that 3D radiative processes contribute about 30% of the observed near-cloud changes. The findings underline the need for improving our ability to accurately measure aerosols near clouds.


2013 ◽  
Vol 13 (15) ◽  
pp. 7895-7901 ◽  
Author(s):  
A. Arola ◽  
T. F. Eck ◽  
J. Huttunen ◽  
K. E. J. Lehtinen ◽  
A. V. Lindfors ◽  
...  

Abstract. The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was typically around 0.1–0.2 W m−2 (both positive and negative) in absolute values, 5–10% in relative ones.


2019 ◽  
Vol 197 ◽  
pp. 02011
Author(s):  
Nataliia Borodai

Aerosol optical depth can be retrieved from measurements performed by Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. The MODIS satellite system includes two polar satellites, Terra and Aqua. Each of them flies over the Pierre Auger Observatory once a day, providing two measurements of aerosols per day and covering the whole area of the Observatory. MODIS aerosol data products have been generated by three dedicated algorithms over bright and dark land and over ocean surface. We choose the Deep Blue algorithm data to investigate the distribution of aerosols over the Observatory, as this algorithm is the most appropriate one for semi-arid land of the Pierre Auger Observatory. This data algorithm allows us to obtain aerosol optical depth values for the investigated region, and to build cloud-free aerosol maps with a horizontal resolution 0.1°×0.1°. Since a suffcient number of measurements was obtained only for Loma Amarilla and Coihueco fluorescence detector (FD) sites of the Pierre Auger Observatory, a more detailed analysis of aerosol distributions is provided for these sites. Aerosols over these FD sites are generally distributed in a similar way each year, but some anomalies are also observed. These anomalies in aerosol distributions appear mainly due to some transient events, such as volcanic ash clouds, fires etc. We conclude that the Deep Blue MODIS algorithm provides more realistic aerosol optical depth values than other available algorithms.


Sign in / Sign up

Export Citation Format

Share Document