scholarly journals Hydrological Response to Climate Change in Beijiang River Basin Based on the SWAT Model

2012 ◽  
Vol 28 ◽  
pp. 241-245 ◽  
Author(s):  
Song Lirong ◽  
Zhang Jianyun
Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2015 ◽  
Vol 19 (3) ◽  
pp. 1385-1399 ◽  
Author(s):  
C. H. Wu ◽  
G. R. Huang ◽  
H. J. Yu

Abstract. The occurrence of climate warming is unequivocal, and is expected to be experienced through increases in the magnitude and frequency of extreme events, including flooding. This paper presents an analysis of the implications of climate change on the future flood hazard in the Beijiang River basin in South China, using a variable infiltration capacity (VIC) model. Uncertainty is considered by employing five global climate models (GCMs), three emission scenarios (representative concentration pathway (RCP) 2.6, RCP4.5, and RCP8.5), 10 downscaling simulations for each emission scenario, and two stages of future periods (2020–2050, 2050–2080). Credibility of the projected changes in floods is described using an uncertainty expression approach, as recommended by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). The results suggest that the VIC model shows a good performance in simulating extreme floods, with a daily runoff Nash–Sutcliffe efficiency coefficient (NSE) of 0.91. The GCMs and emission scenarios are a large source of uncertainty in predictions of future floods over the study region, although the overall uncertainty range for changes in historical extreme precipitation and flood magnitudes are well represented by the five GCMs. During the periods 2020–2050 and 2050–2080, annual maximum 1-day discharges (AMX1d) and annual maximum 7-day flood volumes (AMX7fv) are expected to show very similar trends, with the largest possibility of increasing trends occurring under the RCP2.6 scenario, and the smallest possibility of increasing trends under the RCP4.5 scenario. The projected ranges of AMX1d and AMX7fv show relatively large variability under different future scenarios in the five GCMs, but most project an increase during the two future periods (relative to the baseline period 1970–2000).


2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


2020 ◽  
Vol 12 (23) ◽  
pp. 10050 ◽  
Author(s):  
Junfang Liu ◽  
Baolin Xue ◽  
Yuhui Yan

Land use and climate change are the two major driving factors of watershed runoff change, and it is of great significance to study the influence of watershed hydrological processes on water resource planning and management. This study takes the Changyang River basin as the study area, builds a SWAT model and explores the applicability of the SWAT model in the basin. Moreover, we combine data on land use and climate change in different periods to construct a variety of scenario models to quantitatively analyze the impacts of different scenarios on runoff. The results show that the R2 and Ensof the model are 0.71 and 0.68 in the calibration period, respectively, and those in the verification period are 0.68 and 0.65, respectively, indicating that the SWAT model has good applicability in simulating the runoff of the Changyang River basin. Under the comprehensive scenario of land use and climate change on runoff, we found that land use and climate change have a certain contribution to the change in runoff. Therefore, the runoff of the basin increased by 0.22 m3/s, in which land-use change caused the runoff in the basin to increase by 0.07 m3/s attributed to the decreased area of arable land and the increased area of urban land in the basin. Moreover, climate change has caused the runoff in the basin to increase by 0.13 m3/s, mainly influenced by the increased precipitation. The results show that climate change has a more significant effect on runoff in the basin.


CATENA ◽  
2019 ◽  
Vol 181 ◽  
pp. 104082 ◽  
Author(s):  
Binod Bhatta ◽  
Sangam Shrestha ◽  
Pallav K. Shrestha ◽  
Rocky Talchabhadel

Author(s):  
Son Ngo ◽  
Huong Hoang ◽  
Phuong Tran ◽  
Loc Nguyen

Land use/land cover (LULC) and climate changes are two main factors directly affecting hydrologic conditions. However, very few studies in Vietnam have investigated changes in hydrological process under the impact of climate and land use changes on a basin scale. The objective of this study is to assess the individual and combined impacts of land use and climate changes on hydrological processes for the Nam Rom river basin, Northwestern Viet Nam using Remote Sensing (RS) and Soil and Water Assessment Tools (SWAT) model. SWAT model was used for hydrological process simulation. Results indicated that SWAT proved to be a powerful tool in simulating the impacts of land use and climate change on catchment hydrology. The change in historical land use between 1992 and 2015 strongly contributed to increasing hydrological processes (ET, percolation, ground water, and water yield), whereas, climate change led to significant decrease of all hydrological components. The combination of land use and climate changes significantly reduced surface runoff (-16.9%), ground water (-5.7%), water yield (-9.2%), and sediment load (-4.9%). Overall climatic changes had more significant effect on hydrological components than land use changes in the Nam Rom river basin during the 1992–2015. Under impacts of projected land use and climate change scenarios in 2030 on hydrological process of the upper Nam Rom river basin indicate that ET and surface flow are more sensitive to the changes in land use and climate in the future. In conclusion, the findings of this study will basic knowledge of the effects of climate and land-use changes on the hydrology for future development of integrated land use and water management practices in Nam Rom river basin.


2014 ◽  
Vol 11 (8) ◽  
pp. 9643-9669 ◽  
Author(s):  
C. H. Wu ◽  
G. R. Huang ◽  
H. J. Yu

Abstract. The occurrence of climate warming is unequivocal, and is expected to be experienced through increases in the magnitude and frequency of extreme events, including flooding. This paper presents an analysis of the implications of climate change on the future flood hazard in the Beijiang River basin in South China, using a Variable Infiltration Capacity (VIC) model. Uncertainty is considered by employing five Global Climate Models (GCMs), three emission scenarios (RCP2.6, RCP4.5, and RCP8.5), ten downscaling simulations for each emission scenario, and two stages of future periods (2020–2050, 2050–2080). Credibility of the projected changes in floods is described using an uncertainty expression approach, as recommended by the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). The results suggest that the VIC model shows a good performance in simulating extreme floods, with a daily runoff Nash and Sutcliffe efficiency coefficient (NSE) of 0.91. The GCMs and emission scenarios are a large source of uncertainty in predictions of future floods over the study region, although the overall uncertainty range for changes in historical extreme precipitation and flood magnitudes are well represented by the five GCMs. During the periods 2020–2050 and 2050–2080, annual maximum 1-day discharges (AMX1d) and annual maximum 7-day flood volumes (AMX7fv) are projected to show very similar trends, with the largest possibility of increasing trends occurring under the RCP2.6 scenario, and the smallest possibility of increasing trends under the RCP4.5 scenario. The projected ranges of AMX1d and AMX7fv show relatively large variability under different future scenarios in the five GCMs, but most project an increase during the two future periods (relative to the baseline period 1970–2000).


Sign in / Sign up

Export Citation Format

Share Document