scholarly journals P-type CuO Nanowires and thin Film for Highly Sensitive Kelvin Probe Gas Sensing Applications

2014 ◽  
Vol 87 ◽  
pp. 16-19 ◽  
Author(s):  
M.E. Mazhar ◽  
G. Faglia ◽  
C. Baratto ◽  
E. Comini ◽  
D. Zappa ◽  
...  
2019 ◽  
Vol 288 ◽  
pp. 625-633 ◽  
Author(s):  
Hwan-Seok Jeong ◽  
Min-Jae Park ◽  
Soo-Hun Kwon ◽  
Hyo-Jun Joo ◽  
Hyuck-In Kwon

2020 ◽  
Author(s):  
M Abdul Kaiyum ◽  
Naim Ahmed ◽  
Arif Alam ◽  
M Shamimur Rahman

Abstract Yttrium (Y) doped and pure Titanium Di-oxide (TiO2) thin films were prepared by using spin coater. The coater was set up in laboratory with low cost investment. The films were calcined at 450 °C for 1 hour. For characterization, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Atomic Force Microscopy (AFM) were carried out. LCR Bridge - GW Instek LCR-821 was used for gas sensing applications. XPS showed that the change of electronic structure due to Y doping. SEM and AFM analysis were carried out to determine the surface morphology of the films. Yttrium (Y) decreased the crystallite size of the films and increased the surface roughness and porosity value, which was very good for many sensing applications. Gas sensing property of the deposited films were improved by the incorporation of yttrium impurities and the sensing property improved almost two times than pure TiO2 thin film. Different researches have been done their research related to this topic but no one researchers provide a precise explanation of their results, authors of this research have tried to do that. Moreover the films were prepared by a simple spin coater to reduce the production cost also.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Ayushi Paliwal ◽  
Anjali Sharma ◽  
Monika Tomar ◽  
Vinay Gupta

Focus has been made on the determination of dielectric constant of thin dielectric layer (SnO2 thin film) using surface plasmon resonance (SPR) technique and exploiting it for the detection of NH3 gas. SnO2 thin film has been deposited by rf-sputtering technique on gold coated glass prism (BK-7) and its SPR response was measured in the Kretschmann configuration of attenuated total reflection using a p-polarised light beam at 633 nm wavelength. The SPR response of bilayer film was fitted with Fresnel’s equations in order to calculate the dielectric constant of SnO2 thin film. The air/SnO2/Au/prim system has been utilized for detecting varying concentration (500 ppm to 2000 ppm) of NH3 gas at room temperature using SPR technique. SPR curve shows significant shift in resonance angle from 44.8° to 56.7° on exposure of fixed concentration of NH3 gas (500 ppm to 2000 ppm) with very fast response and recovery speeds.


2012 ◽  
Vol 717-720 ◽  
pp. 1195-1198
Author(s):  
Geunsik Lim ◽  
Tariq Manzur ◽  
Aravinda Kar

An uncooled SiC-based electro-optic device is developed for gas sensing applications. P-type dopants Ga, Sc, P and Al are incorporated into an n-type crystalline 6H-SiC substrate by a laser doping technique for sensing CO2, CO, NO2 and NO gases, respectively. Each dopant creates an acceptor energy level within the bandgap of the substrate so that the energy gap between this acceptor level and the valence band matches the quantum of energy emitted by the gas of interest. The photons of the gas excite electrons from the valence band to the acceptor level, which alters the electron density in these two states. Consequently, the refractive index of the substrate changes, which, in turn, modifies the reflectivity of the substrate. This change in reflectivity represents the optical signal of the sensor, which is probed remotely with a laser such as a helium-neon laser. Although the midwave infrared (3-5 mm) band is studied in this paper, the approach is applicable to other spectral bands.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1116 ◽  
Author(s):  
Eusebiu Ionete ◽  
Stefan Spiridon ◽  
Bogdan Monea ◽  
Elena Stratulat

The electrical response of sulfonated single-walled carbon nanotubes (SWCNTs) to NO and NO2, for gas sensing applications, at room temperature, is reported in this work. A specific configuration based on SWCNT deposition between double pair configuration gold electrodes, supported on a substrate, was considered for the sensing device; employed characterization technique where FTIR and SEM. The experimental results showed a p-type response of the sulfonated SWCNTs, with decrease in resistance, under exposure to NO gas (40–200 ppb) and NO2 (40–200 ppb). Also, the sensor responses to successive exposures at NO2 800 ppb together with investigation of long term stability, at 485 ppb for NO, are reported. The reaction mechanism in case of NO and NO2 detection with sulfonated SWCNTs is presented.


2014 ◽  
Vol 201 ◽  
pp. 420-425 ◽  
Author(s):  
Jaroslaw Domaradzki ◽  
Danuta Kaczmarek ◽  
Damian Wojcieszak ◽  
Michał Mazur

2019 ◽  
Vol 30 (43) ◽  
pp. 435502 ◽  
Author(s):  
Eliana M F Vieira ◽  
J P B Silva ◽  
Kateřina Veltruská ◽  
V Matolín ◽  
A L Pires ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2551 ◽  
Author(s):  
Asha Rani ◽  
Kyle DiCamillo ◽  
Md Ashfaque Hossain Khan ◽  
Makarand Paranjape ◽  
Mona E. Zaghloul

In this study, electrical characteristics of MoTe2 field-effect transistors (FETs) are investigated as a function of channel thickness. The conductivity type in FETs, fabricated from exfoliated MoTe2 crystals, switched from p-type to ambipolar to n-type conduction with increasing MoTe2 channel thickness from 10.6 nm to 56.7 nm. This change in flake-thickness-dependent conducting behavior of MoTe2 FETs can be attributed to modulation of the Schottky barrier height and related bandgap alignment. Change in polarity as a function of channel thickness variation is also used for ammonia (NH3) sensing, which confirms the p- and n-type behavior of MoTe2 devices.


Sign in / Sign up

Export Citation Format

Share Document