scholarly journals Analysis and Design of Shear Wall Coupling Beam Using Hybrid Steel Truss Encased in Reinforced Mortar

2017 ◽  
Vol 171 ◽  
pp. 940-947
Author(s):  
Nursiah Chairunnisa ◽  
Iman Satyarno ◽  
Muslikh ◽  
Akhmad Aminullah
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Zhiheng Deng ◽  
Changchun Xu ◽  
Qiang Hu ◽  
Jian Zeng ◽  
Ping Xiang

Based on existing experimental results, the finite element analyses were carried out on shear wall structures with steel truss coupling beams. This work studied the seismic behaviors and the working mechanism of the steel truss coupling beam at the ultimate state and put forward two parameters: the area ratio of web member to chord and the stiffness ratio of coupling beam to shear wall. The seismic optimum design method of the coupling beam was also proposed. Afterwards, a comparative analysis was implemented on the three-dimensional shear wall model with steel truss coupling beams designed by the proposed design method. The results show that the structures designed by the proposed method have excellent seismic behaviors, the steel truss coupling beams have enough stiffness to connect shear walls effectively, and its web members have appropriate cross sections to dissipate seismic energy.


Author(s):  
Guoqiang LI ◽  
Mengde PANG ◽  
Feifei Sun ◽  
Liulian LI ◽  
Jianyun SUN

Coupled shear walls are widely used in high rise buildings, since they can not only provide efficient lateral stiffness but also behave outstanding energy dissipation ability especially for earthquake-resistance. Traditionally, the coupling beams are made of reinforced concrete, which are prone to shear failure due to low aspect ratio and greatly reduce the efficiency and ability of energy dissipation.  For overcoming the shortcoming of concrete reinforced coupling beams (RCB), an innovative steel coupling beams called two-level-yielding steel coupling beam (TYSCB) is invented to balance the demand of stiffness and energy dissipation for coupled shear walls. TYSCBs are made of two parallel steel beams with yielding at two different levels.  To verify and investigate the aseismic behaviour improvement of TYSCB-coupled shear walls, two 1/3 scale, 10-storey coupled shear wall specimens with TYSCB and RCB were tested under both gravity and lateral displacement reversals. These two specimens were designed with the same bearing capacity, thus to be easier to compare. The experimental TYSCB specimen demonstrated more robust cyclic performance. Both specimens reached 1% lateral drift, however, the TYSCB-coupled shear wall showed minimal strength degradation. Additionally, a larger amount of energy was dissipated during each test of the TYSCB specimen, compared with the RCB specimen. Based on the experimental results, design recommendations are provided.


2019 ◽  
Vol 11 (3) ◽  
pp. 867
Author(s):  
Yun Chen ◽  
Junzuo Li ◽  
Zheng Lu

The coupled shear wall with replaceable coupling beams is a current research hotspot, while still lacking comprehensive studies that combine both experimental and numerical approaches to describe the global performance of the structural system. In this paper, hybrid coupled shear walls (HSWs) with replaceable coupling beams (RCBs) are studied. The middle part of the coupling beam is replaced with a replaceable “fuse”. Four ½-scale coupled shear wall specimens including a conventional reinforced concrete shear wall (CSW) and three HSWs (F1SW/F2SW/F3SW) with different kinds of replaceable “fuses” (Fuse 1/Fuse 2/Fuse 3) are tested through cyclic loading. Fuse 1 is an I-shape steel with a rhombic opening at the web; Fuse 2 is a double-web I-shape steel with lead filled in the gap between the two webs; Fuse 3 consists of two parallel steel tubes filled by lead. The comparison of seismic properties of the four shear walls in terms of failure mechanism, hysteretic response, strength degradation, stiffness degradation, energy consumption, and strain response is presented. The nonlinear finite element analysis of four shear walls is conducted by ABAQUS software. The deformation process, yielding sequence of components, skeleton curves, and damage distribution of the walls are simulated and agree well with the experimental results. The primary benefit of HSWs is that the damage of the coupling beam is concentrated at the replaceable “fuse”, while other parts remain intact. Besides, because the “fuse” can dissipate much energy, the damage of the wall-piers is also alleviated. In addition, among the three HSWs, F1SW possesses the best ductility and load retention capacity while F2SW possesses the best energy dissipation capacity. Based on this comprehensive study, some suggestions for the conceptual design of HSWs are further proposed.


2005 ◽  
Vol 61 (7) ◽  
pp. 912-941 ◽  
Author(s):  
Wan-Shin Park ◽  
Hyun-Do Yun ◽  
Sun-Kyoung Hwang ◽  
Byung-Chan Han ◽  
Il Seung Yang

2013 ◽  
Vol 788 ◽  
pp. 538-541
Author(s):  
Peng Zhang ◽  
Fu Ma

Coupling beam, the first line resisting earthquake, is directly related to the overall performance of the shear wall structure. Using the large general finite element analysis software ANSYS, the coupling beam span-depth ratio is 2~3 different reinforcement scheme in finite element analysis. Analysis on the ductility performance of reinforced concrete coupling beams in shear wall structure in three fields: the concrete strength grade, the longitudinal reinforcement ratio and the stirrup ratio, provides a basis for the design of the structure and to provide a reference for similar studies.


2012 ◽  
Vol 594-597 ◽  
pp. 824-827 ◽  
Author(s):  
Hu Qiang ◽  
Zhi Heng Deng ◽  
Lin Qian ◽  
Dong Xiao Xu

A calculation model about failure mode and ultimate bearing capacity of steel truss coupling beam is proposed based on compatible distortion and balance conditions, second-order effect, elastic-perfectly plasticity and strain state about eight specimens when these specimens fail under low cyclic reversed loading. And then this model is applied to analyzing influences of height, span and chord stiffness on bearing capacity of truss. Some valuable results are obtained such as advantageous range of span-to-height ratio and influence laws of chord stiffness on ultimate capacity.


Sign in / Sign up

Export Citation Format

Share Document