scholarly journals The Effect of Humic Acid and Silicic Acid on P Adsorption by Amorphous Minerals

2014 ◽  
Vol 20 ◽  
pp. 402-409 ◽  
Author(s):  
Eko Hanudin ◽  
S.T. Sukmawati ◽  
Bostang Radjagukguk ◽  
Nasih Widya Yuwono
2018 ◽  
Vol 2 (3) ◽  
pp. 119
Author(s):  
Heri Wibowo ◽  
Benito Heru Purwanto ◽  
Supriyanto Notohadisuwarno

Humic acids containing carboxyl and hydroxyl groups that have the ability to cover the P adsorption  site in Typic Hapludults. Molybdate has similarity behaviour with phosphate in theacid soils. Research aim was to study the effects of molybdate and humic acid to the kinetics of phosphate adsorption in Typic Hapludults of Cigudeg, Bogor. Important of kinetics is to get accuration of materials transport, to control influence on anion mobility, that the assessment is needed for the efficient application of Mo and P. Aplication humic acid and molybdate as competitor anion of phosphate was conducted with combination of humic acid and Mo concentration as double anions. Many models describe the kinetics for the adsorption of phosphate by soils i.e. zero order, first order, second order, and Elovich. As ststistically, there was not interaction of humic acid and molybdate on P adsorption. Application of humic acid with rate of 100 mg.L-1 was not effective decrease P adsorption in Typic Hapludults. It was due to the pH of the adsorption system that get near to its pKa of carboxyl gruop about 5. Meanwhile aplication 2 and 5 mmol.L-1 of molybdate significantly decrease of P adsorption. The second order kinetics models apropriate to the adsorptionof P in the Typic Hapludults of Cigudeg, with determination coefficients value (R2) of  0.999-1 and standard error  value (SE) of 0.001–0.011.The results suggest that the molybdate as competitor anion affected the kinetics for the adsorption of phosphate due to the charge of molybdate.


2018 ◽  
Vol 42 (1) ◽  
pp. 7-20 ◽  
Author(s):  
Henrique José Guimarães Moreira Maluf ◽  
Carlos Alberto Silva ◽  
Nilton Curi ◽  
Lloyd Darrell Norton ◽  
Sara Dantas Rosa

ABSTRACT Humic acid (HA) may reduce adsorption and increase soil P availability, however, the magnitude of this effect is different when Ca2+ prevails over Mg2+ in limed soils. The objective of this study was to evaluate the effects of HA rates and carbonate sources on the adsorption, phosphate maximum buffering capacity (PMBC), and P availability in two contrasting soils. Oxisol and Entisol samples were firstly incubated with the following HA rates: 0, 20, 50, 100, 200 and 400 mg kg-1, combined with CaCO3 or MgCO3, to evaluate P adsorption. In sequence, soil samples were newly incubated with P (400 mg kg-1) to evaluate P availability. The least P adsorption was found when 296 mg kg-1 of HA was added to Oxisol. Applying HA rates decreased maximum adsorption capacity, increased P binding energy to soil colloids and did not alter PMBC of Entisol. Available P contents in Oxisol increased with HA rates, but it did not change in Entisol. Choosing the right HA rate can decrease PMBC up to 40% and increase the Oxisol P availability by 17%. Application of MgCO3 instead of CaCO3 decreased P adsorption in both soils. Thus, a positive correlation between Ca2+ content and PMBC was verified. Optimum rate of HA and the preponderance of Mg2+ instead of Ca2+ in soil volume fertilized with P are effective practices to reduce adsorption and increase P availability, especially in clayey Oxisol.


The authors' methodic for assessing the role of chemical and physic-chemical factors during the structure formation of gypsum stone is presented in the article. The methodic is also makes it possible to reveal the synergistic effect and to determine the ranges of variation of controls factors that ensure maximum values of such effect. The effect of a micro-sized modifier based on zinc hydro-silicates on the structure formation of building gypsum is analyzed and corresponding dependencies are found. It is shown that effects of influence of modifier on the properties of gypsum compositions are determined by chemical properties of modifier. Among the mentioned properties are sorption characteristics (which depend on the amount of silicic acid and its state) and physicochemical properties - the ability to act as a substrate during crystal formation. The proposed method can also be extended to other binding substances and materials. This article contributes to the understanding of the processes that occur during the structure formation of composites, which will make it possible to control the structure formation in the future, obtaining materials with a given set of properties.


2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


Author(s):  
Yuichi Niibori ◽  
Yasunori Kasuga ◽  
Hiroshi Kokubun ◽  
Kazuki Iijima ◽  
Hitoshi Mimura

2012 ◽  
Vol 51 (3) ◽  
pp. 228-237
Author(s):  
D. Dudare ◽  
M. Klavins

The aim of this study is to determine the Cu(II) complexing capacity and stability constants of Cu(II) complexes of humic acids isolated from two well-characterized raised bog peat profiles in respect to the basic properties and humification characteristics of the studied peats and their humic acids. The complex stability constants significantly change within the studied bog profiles and are well correlated with the age and decomposition degree of the peat layer from which the humic acids have been isolated. Among factors that influence this complexation process, molecular mass and ability to form micellar structures (supramolecules) of humic substances are of key importance.


Sign in / Sign up

Export Citation Format

Share Document