scholarly journals Effect of Some Polymers on Soil-water Losses and Sediment Size depending on Initial Aggregate Size under Sequential Simulated Rainfall

2015 ◽  
Vol 29 ◽  
pp. 21 ◽  
Author(s):  
Tugrul Yakupoglu ◽  
Taskin Oztas ◽  
Ferit Kiray ◽  
Berna Demirkol
Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Linhua Wang ◽  
Bo Ma ◽  
Faqi Wu

Abstract. Soil and water losses in agriculture are major environmental problems worldwide, especially on the Loess Plateau, China. Summer fallow management may help to control soil erosion and conserve water. This study investigated the effects of wheat stubble on runoff, infiltration, and soil loss in laboratory plots under simulated rainfall. The treatments comprised wheat stubble cover (WS) and traditional plowing (TP) in runoff plots (4.0 m  ×  1.0 m) with three slope gradients (5, 10, and 15°) under simulated rainfall at 80 mm h−1 for 1 h. The runoff volume from WS plots was significantly less than that from TP. The runoff reduction with WS ranged from 91.92 to 92.83 % compared with TP. The runoff rates varied with the runoff volume in the same manner. The infiltration amount was higher with WS (94.8–96.2 % of rainwater infiltrated) than TP (35.4–57.1 %). The sediment concentration was significantly lower with WS than TP. Compared with TP (304.31–731.23 g m−2), the sediment losses were reduced dramatically in WS (2.41–3.78 g m−2) and the sediment loss slightly increased with slope; however, it was greatly increased as slope increased in TP. These results revealed that the stubble cover was the main factor reducing runoff and sediment losses and improving infiltration and that stubble showed a great potential to control erosion and conserve soil and water resources during the summer fallow period in the Loess Plateau region.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 730 ◽  
Author(s):  
Moein Farahnak ◽  
Keiji Mitsuyasu ◽  
Kyoichi Otsuki ◽  
Kuniyoshi Shimizu ◽  
Atsushi Kume

Soil water repellency (SWR) is a cause of low water infiltration, overland flow and soil erosion in mountainous coniferous plantations in Japan. The factors determining SWR intensity were investigated in two coniferous plantations of Chamaecyparis obtusa (Siebold et Zucc.) Endl. and Cryptomeria japonica (L.f.) D. Don, using intact tree plots and cut tree plots on the same hillslope. The SWR of Ch. obtusa plots was stronger than that of Cr. japonica plots. SWR intensity decreased after tree cutting. There were no significant differences in SWR upslope and downslope of individual trees/stumps for both tree species, though areas downslope of individual Ch. obtusa trees had higher SWR intensity than those upslope. SWR intensity and soil aggregate stability were positively correlated in the Ch. obtusa intact tree plot (r = 0.88, p < 0.01), whereas in the cut tree plot, this correlation was weak with no significance (r = 0.29, p = 0.41). Soil aggregate size had a non-significant influence on SWR intensity. These findings suggest that SWR intensity was not related to the soil aggregate size, but SWR intensity seemed have a role in soil aggregation in the Ch. obtusa intact tree plot. Destruction of soil aggregates could occur after tree cutting because of physical disturbances or increased input of different types of organic matter from other vegetation into soil. The presence of Ch. obtusa introduces a source of SWR, although uncertainty remains about how water repellency is distributed around soil aggregates. The distribution pattern of soil water content and soil hydraulic conductivity around Cr. japonica was related to other factors such as the litter layer and non-water-repellant soil.


Author(s):  
Fernando Gomes de Souza ◽  
Valdinar Ferreira Melo ◽  
Wellington Farias Araújo ◽  
Thiago Henrique de Castro Araújo

Currently in Brazil, the main form of erosion is caused by the impact of raindrops on the soil surface, triggering the process of water erosion and causing serious damage to agricultural areas. This study evaluated losses of soil, water, organic carbon and nutrients in different cultures, bare soil and savanna under natural rain. The experimental design was completely randomized with five treatments (bare soil - BS, cowpea bean - CB, Brachiaria brizantha - BB, corn - CO and natural savanna – SN) with three replications; The treatment of bare soil (BS), followed by the treatment cultivated with cowpea bean  (CB) showed higher losses of soil, water, organic carbon and nutrients; The highest losses of soil, water, organic carbon and nutrients in the treatment of bare soil (BS) occurred during the period of greatest erosivity; but for treatments CB, BB and CO, the highest losses occurred during the establishment of the crop, in view of the lower soil cover. Soils cultivated with Brachiaria brizantha - BB, corn - CO and in the Natural Savana - SN area were more efficient in reducing soil and water losses during all months evaluated. Plant cover produced by the (SN) treatment and by the (BB) and (CO) treatments acted to reduce the harmful effects of erosion, minimizing losses of nutrients and organic carbon. The soil should be well protected during periods when rainfall presents the highest values of erosivity index.


1978 ◽  
Vol 42 (5) ◽  
pp. 675-679 ◽  
Author(s):  
V. L. Quisenberry ◽  
R. E. Phillips

Author(s):  
Jens Erik Blomquist ◽  
Kerstin Berglund

Two dates (early, normal) for application and incorporation of structure lime to clay soil were examined at four field sites, to test whether early liming had more favourable effects on aggregate stability. Aggregate size distribution measurements revealed a finer tilth at the early liming date (20 August) than the normal date (14 September). Aggregate stability estimated one year later, using as a proxy turbidity in leachate from 2–5 mm aggregates subjected to two simulated rainfall events, was significantly improved (11% lower turbidity) with early compared with normal liming date. Three years after structure liming, soil structural stability measurements on lysimeters (15 cm high, inner diameter 18 cm) subjected to repeated simulated rainfall events showed no significant differences in turbidity in leachate between the early and normal liming dates. However, there was a strong interaction between liming date and site indicating different reactions at different sites. Our results suggest that early spreading and incorporation can improve the success of structure liming, but only if soil conditions are favourable.


Sign in / Sign up

Export Citation Format

Share Document