Dioleoyl phosphatidic acid increases intracellular Ca2+ through endogenous LPA receptors in C6 glioma and L2071 fibroblasts

2007 ◽  
Vol 83 (4) ◽  
pp. 268-276 ◽  
Author(s):  
Young-Ja Chang ◽  
Yu-Lee Kim ◽  
Yun-Kyung Lee ◽  
Santosh J. Sacket ◽  
Kyeok Kim ◽  
...  
2011 ◽  
Vol 164 ◽  
pp. S32
Author(s):  
Anna Grzelczyk ◽  
Przemysław Rytczak ◽  
Andrzej Okruszek ◽  
Maria Koziołkiewicz ◽  
Nigel Pyne ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1452
Author(s):  
Ana Gomez-Larrauri ◽  
Patricia Gangoiti ◽  
Natalia Presa ◽  
Asier Dominguez-Herrera ◽  
Chiara Donati ◽  
...  

Phosphatidic acid (PA) is a bioactive phospholipid capable of regulating key biological functions, including neutrophil respiratory burst, chemotaxis, or cell growth and differentiation. However, the mechanisms whereby PA exerts these actions are not completely understood. In this work, we show that PA stimulates myoblast proliferation, as determined by measuring the incorporation of [3H]thymidine into DNA and by staining the cells with crystal violet. PA induced the rapid phosphorylation of Akt and ERK1/2, and pretreatment of the cells with specific small interferin RNA (siRNA) to silence the genes encoding these kinases, or with selective pharmacologic inhibitors, blocked PA-stimulated myoblast proliferation. The mitogenic effects of PA were abolished by the preincubation of the myoblasts with pertussis toxin, a Gi protein inhibitor, suggesting the implication of Gi protein-coupled receptors in this action. Although some of the effects of PA have been associated with its possible conversion to lysoPA (LPA), treatment of the myoblasts with PA for up to 60 min did not produce any significant amount of LPA in these cells. Of interest, pharmacological blockade of the LPA receptors 1 and 2, or specific siRNA to silence the genes encoding these receptors, abolished PA-stimulated myoblast proliferation. Moreover, PA was able to compete with LPA for binding to LPA receptors, suggesting that PA can act as a ligand of LPA receptors. It can be concluded that PA stimulates myoblast proliferation through interaction with LPA1 and LPA2 receptors and the subsequent activation of the PI3K/Akt and MEK/ERK1-2 pathways, independently of LPA formation.


2008 ◽  
Vol 31 (5) ◽  
pp. 628-633
Author(s):  
Young-Ja Chang ◽  
Yu-Lee Kim ◽  
Ji-Yeong Jo ◽  
Kim Kyeok ◽  
Hyo-Lim Kim ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Fukasawa ◽  
Mari Gotoh ◽  
Akiharu Uwamizu ◽  
Takatsugu Hirokawa ◽  
Masaki Ishikawa ◽  
...  

AbstractCyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator that, along with its chemically stabilized analogue 2-carba-cyclic phosphatidic acid (2ccPA), induces various biological activities in vitro and in vivo. Although cPA is similar to lysophosphatidic acid (LPA) in structure and synthetic pathway, some of cPA biological functions apparently differ from those reported for LPA. We previously investigated the pharmacokinetic profile of 2ccPA, which was found to be rapidly degraded, especially in acidic conditions, yielding an unidentified compound. Thus, not only cPA but also its degradation compound may contribute to the biological activity of cPA, at least for 2ccPA. In this study, we determined the structure and examined the biological activities of 2-carba-lysophosphatidic acid (2carbaLPA) as a 2ccPA degradation compound, which is a type of β-LPA analogue. Similar to LPA and cPA, 2carbaLPA induced the phosphorylation of the extracellular signal-regulated kinase and showed potent agonism for all known LPA receptors (LPA1–6) in the transforming growth factor-α (TGFα) shedding assay, in particular for LPA3 and LPA4. 2carbaLPA inhibited the lysophospholipase D activity of autotaxin (ATX) in vitro similar to other cPA analogues, such as 2ccPA, 3-carba-cPA, and 3-carba-LPA (α-LPA analogue). Our study shows that 2carbaLPA is a novel β-LPA analogue with high potential for the activation of some LPA receptors and ATX inhibition.


1986 ◽  
Vol 56 (03) ◽  
pp. 260-262 ◽  
Author(s):  
Isabella Roos ◽  
Fabrizia Ferracin ◽  
Alfred Pletscher

SummaryArginine-vasopressin (AVP) in the presence of Mg2+ but not in the absence of bivalent cations led to accumulation of [32P]-phosphatidic acid ([32P]-PA) in human blood platelets. Mg2+ also enhanced the specific binding of [3H]-AVP to intact platelets. The concentrations of the cation which enabled AVP to cause half maximal rise of [32P]-PA and those inducing half maximal [3H]-AVP-binding were of the same order. It is concluded that the stimulation of phosphatidyl inositide breakdown by AVP in presence of Mg2+ is at least partially due to a Mg2+-induced enhancement of specific AVP-binding to the platelet membranes.


1983 ◽  
Vol 50 (02) ◽  
pp. 595-600 ◽  
Author(s):  
Y Watanabe ◽  
M Soda ◽  
N Fukamachi ◽  
B Kobayashi

SummaryThrombin-induced platelet release reaction examined with secretion of calcium and N-acetylglucosaminidase was significantly enhanced in the platelets from reserpine-treated rabbits as compared with the control. On the other hand, 32P-incorporation into phosphatidic acid was suppressed in the reserpinized platelets in activated state. Thrombin induced phosphatidylinositol (PI)- breakdown, which was examined by decreases in radioactivity and content of PI, and an increase in diacylglycerol, was not enhanced in the reserpinized platelets as compared with the control. The phosphorylation of the specific protein coupled to thrombin- induced platelet PI-breakdown was not stimulated in the reserpinized platelets as compared with the control. In contrast to PI, PC-degradation by thrombin was significantly stimulated in the reserpinized platelets. Possible existence of pathway(s) other than that associated with an enhancement of Pl-tumover is conceivable as a mechanism involved in platelet release reaction.


2010 ◽  
Vol 113 (Special_Supplement) ◽  
pp. 228-235 ◽  
Author(s):  
Qiang Jia ◽  
Yanhe Li ◽  
Desheng Xu ◽  
Zhenjiang Li ◽  
Zhiyuan Zhang ◽  
...  

Object The authors sought to evaluate modification of the radiation response of C6 glioma cells in vitro and in vivo by inhibiting the expression of Ku70. To do so they investigated the effect of gene transfer involving a recombinant replication-defective adenovirus containing Ku70 short hairpin RNA (Ad-Ku70shRNA) combined with Gamma Knife treatment (GKT). Methods First, Ad-Ku70shRNA was transfected into C6 glioma cells and the expression of Ku70 was measured using Western blot analysis. In vitro, phenotypical changes in C6 cells, including proliferation, cell cycle modification, invasion ability, and apoptosis were evaluated using the MTT (3′(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, Western blot analysis, and cell flow cytometry. In vivo, parental C6 cells transfected with Ad-Ku70shRNA were implanted stereotactically into the right caudate nucleus in Sprague-Dawley rats. After GKS, apoptosis was analyzed using the TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling) method. The inhibitory effects on growth and invasion that were induced by expression of proliferating cell nuclear antigen and matrix metalloproteinase–9 were determined using immunohistochemical analyses. Results The expression of Ku70 was clearly inhibited in C6 cells after transfection with Ad-Ku70shRNA. In vitro following transfection, the C6 cells showed improved responses to GKT, including suppression of proliferation and invasion as well as an increased apoptosis index. In vivo following transfection of Ad-Ku70shRNA, the therapeutic efficacy of GKT in rats with C6 gliomas was greatly enhanced and survival times in these animals were prolonged. Conclusions Our data support the potential for downregulation of Ku70 expression in enhancing the radiosensitivity of gliomas. The findings of our study indicate that targeted gene therapy–mediated inactivation of Ku70 may represent a promising strategy in improving the radioresponsiveness of gliomas to GKT.


Sign in / Sign up

Export Citation Format

Share Document