lpa receptors
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 22 (17) ◽  
pp. 9575
Author(s):  
Anu Jose ◽  
Petra C. Kienesberger

Besides serving as a structural membrane component and intermediate of the glycerolipid metabolism, lysophosphatidic acid (LPA) has a prominent role as a signaling molecule through its binding to LPA receptors at the cell surface. Extracellular LPA is primarily produced from lysophosphatidylcholine (LPC) through the activity of secreted lysophospholipase D, autotaxin (ATX). The degradation of extracellular LPA to monoacylglycerol is mediated by lipid phosphate phosphatases (LPPs) at the cell membrane. This review summarizes and interprets current literature on the role of the ATX-LPA-LPP3 axis in the regulation of energy homeostasis, insulin function, and adiposity at baseline and under conditions of obesity. We also discuss how the ATX-LPA-LPP3 axis influences obesity-related metabolic complications, including insulin resistance, fatty liver disease, and cardiomyopathy.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Victoria Blaho ◽  
Jerold Chun ◽  
Danielle Jones ◽  
Deepa Jonnalagadda ◽  
Yasuyuki Kihara ◽  
...  

Lysophosphatidic acid (LPA) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Lysophospholipid Receptors [55, 19, 82, 129]) are activated by the endogenous phospholipid LPA. The first receptor, LPA1, was identified as ventricular zone gene-1 (vzg-1) [40], This discovery represented the beginning of the de-orphanisation of members of the endothelial differentiation gene (edg) family, as other LPA and sphingosine 1-phosphate (S1P) receptors were found. Five additional LPA receptors (LPA2,3,4,5,6) have since been identified [82] and their gene nomenclature codified for human LPAR1, LPAR2, etc. (HUGO Gene Nomenclature Committee, HGNC) and Lpar1, Lpar2, etc. for mice (Mouse Genome Informatics Database, MGI) to reflect species and receptor function of their corresponding proteins. The crystal structure of LPA1 is solved and indicates that LPA accesses the extracellular binding pocket, consistent with its proposed delivery via autotaxin [13]. These studies have also implicated cross-talk with endocannabinoids via phosphorylated intermediates that can also activate these receptors. The binding affinities to LPA1 of unlabeled, natural LPA and anandamide phosphate (AEAp) were measured using backscattering interferometry (pKd = 9) [83, 104]. Utilization of this method indicated affinities that were 77-fold lower than when measured using radioactivity-based protocols [128]. Targeted deletion of LPA receptors has clarified signalling pathways and identified physiological and pathophysiological roles. Multiple groups have independently published validation of all six LPA receptors described in these tables, and further validation was achieved using a distinct read-out via a novel TGFα "shedding* assay [48]. LPA has been proposed to be a ligand for GPR35 [94], supported by a study revealing that LPA modulates macrophage function through GPR35 [54]. However chemokine (C-X-C motif) ligand 17 (CXCL17) is reported to be a ligand for GPR35/CXCR8 [76]. Moreover, LPA has also been described as an agonist for the transient receptor potential (Trp) ion channels TRPV1 [87] and TRPA1 [58]. All of these proposed non-GPCR receptor identities require confirmation and are not currently recognized as bona fide LPA receptors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keiko Fukasawa ◽  
Mari Gotoh ◽  
Akiharu Uwamizu ◽  
Takatsugu Hirokawa ◽  
Masaki Ishikawa ◽  
...  

AbstractCyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator that, along with its chemically stabilized analogue 2-carba-cyclic phosphatidic acid (2ccPA), induces various biological activities in vitro and in vivo. Although cPA is similar to lysophosphatidic acid (LPA) in structure and synthetic pathway, some of cPA biological functions apparently differ from those reported for LPA. We previously investigated the pharmacokinetic profile of 2ccPA, which was found to be rapidly degraded, especially in acidic conditions, yielding an unidentified compound. Thus, not only cPA but also its degradation compound may contribute to the biological activity of cPA, at least for 2ccPA. In this study, we determined the structure and examined the biological activities of 2-carba-lysophosphatidic acid (2carbaLPA) as a 2ccPA degradation compound, which is a type of β-LPA analogue. Similar to LPA and cPA, 2carbaLPA induced the phosphorylation of the extracellular signal-regulated kinase and showed potent agonism for all known LPA receptors (LPA1–6) in the transforming growth factor-α (TGFα) shedding assay, in particular for LPA3 and LPA4. 2carbaLPA inhibited the lysophospholipase D activity of autotaxin (ATX) in vitro similar to other cPA analogues, such as 2ccPA, 3-carba-cPA, and 3-carba-LPA (α-LPA analogue). Our study shows that 2carbaLPA is a novel β-LPA analogue with high potential for the activation of some LPA receptors and ATX inhibition.


2021 ◽  
Vol 22 (15) ◽  
pp. 7864
Author(s):  
Bhakta Prasad Gaire ◽  
Ji-Woong Choi

Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1629
Author(s):  
Yu-Hsuan Lin ◽  
Yueh-Chien Lin ◽  
Chien-Chin Chen

Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from membrane phospholipids. LPA initiates cellular effects upon binding to a family of G protein-coupled receptors, termed LPA receptors (LPAR1 to LPAR6). LPA signaling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, angiogenesis, and lymphangiogenesis. Since the expression and function of LPA receptors are critical for cellular effects, selective antagonists may represent a potential treatment for a broad range of illnesses, such as cardiovascular diseases, idiopathic pulmonary fibrosis, voiding dysfunctions, and various types of cancers. More new LPA receptor antagonists have shown their therapeutic potentials, although most are still in the preclinical trial stage. This review provided integrative information and summarized preclinical findings and recent clinical trials of different LPA receptor antagonists in cancer progression and resistance. Targeting LPA receptors can have potential applications in clinical patients with various diseases, including cancer.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Victoria Blaho ◽  
Jerold Chun ◽  
Danielle Jones ◽  
Deepa Jonnalagadda ◽  
Yasuyuki Kihara ◽  
...  

Lysophosphatidic acid (LPA) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Lysophospholipid Receptors [55, 19, 82, 129]) are activated by the endogenous phospholipid LPA. The first receptor, LPA1, was identified as ventricular zone gene-1 (vzg-1) [40], This discovery represented the beginning of the de-orphanisation of members of the endothelial differentiation gene (edg) family, as other LPA and sphingosine 1-phosphate (S1P) receptors were found. Five additional LPA receptors (LPA2,3,4,5,6) have since been identified [82] and their gene nomenclature codified for human LPAR1, LPAR2, etc. (HUGO Gene Nomenclature Committee, HGNC) and Lpar1, Lpar2, etc. for mice (Mouse Genome Informatics Database, MGI) to reflect species and receptor function of their corresponding proteins. The crystal structure of LPA1 is solved and indicates that LPA accesses the extracellular binding pocket, consistent with its proposed delivery via autotaxin [13]. These studies have also implicated cross-talk with endocannabinoids via phosphorylated intermediates that can also activate these receptors. The binding affinities to LPA1 of unlabeled, natural LPA and anandamide phosphate (AEAp) were measured using backscattering interferometry (pKd = 9) [83, 104]. Utilization of this method indicated affinities that were 77-fold lower than when measured using radioactivity-based protocols [128]. Targeted deletion of LPA receptors has clarified signalling pathways and identified physiological and pathophysiological roles. Multiple groups have independently published validation of all six LPA receptors described in these tables, and further validation was achieved using a distinct read-out via a novel TGFα "shedding* assay [48]. LPA LPA has been proposed to be a ligand for GPCR35 [94], supported by a recent study revealing that LPA modulates macrophage function through GPR35 [54]. However chemokine (C-X-C motif) ligand 17 (CXCL17) is reported to be a ligand for GPR35/CXCR8 [76]. Moreover, LPA has also been described as an agonist for the transient receptor potential (Trp) ion channels TRPV1 [87] and TRPA1 [58]. All of these proposed non-GPCR receptor identities require confirmation and are not currently recognized as bona fide LPA receptors.


2021 ◽  
Author(s):  
Tao Wang ◽  
Zhanxiong Luo ◽  
Rixin Chen ◽  
Jingzhang Li ◽  
Kai Sun

Abstract Background: LPA and its receptors play a major role in adjusting malignant behaviors in breast cancer (BC). Abnormal expression of certain LPA receptors in BC indicate that LPA receptors could be novel potential biomarkers in predicting prognosis and progression of BC. Further studies would focus on molecular mechanisms of LPA receptors in BC.Results: In this study, we examined the transcription and survival data of BC patient LPARs from ONCOMINE, Kaplan-Meier plotter, GEPIA, bcGenEx-Miner and cBioPortal database. We revealed that LPAR2/3/5 expression levels in BC tissue were higher than that in normal breast tissue, whereas the expression levels of LPAR1/4/6 in BC tissue were lower than normal breast tissue. The expression levels of LPAR1/4/6 were associated with advanced-stage tumor. Survival analysis using the K-M plotter database showed that in all BC patients, high mRNA expression of LPAR1/4/5/6 and the low mRNA expression of LPAR2/3 were correlated with the improved outcomes of BC patients. Subgroup analyses based on clinicopathological factors further revealed relationship between the expression levels of LPARs and the prognosis of BC patients with different types. Conclusions: This study shows that LPAR2/3/5 are potential targets for precision treatment of BC patients, and six LPARs are new biomarkers for the prognosis of BC patients.


2021 ◽  
Vol 22 (3) ◽  
pp. 1452
Author(s):  
Ana Gomez-Larrauri ◽  
Patricia Gangoiti ◽  
Natalia Presa ◽  
Asier Dominguez-Herrera ◽  
Chiara Donati ◽  
...  

Phosphatidic acid (PA) is a bioactive phospholipid capable of regulating key biological functions, including neutrophil respiratory burst, chemotaxis, or cell growth and differentiation. However, the mechanisms whereby PA exerts these actions are not completely understood. In this work, we show that PA stimulates myoblast proliferation, as determined by measuring the incorporation of [3H]thymidine into DNA and by staining the cells with crystal violet. PA induced the rapid phosphorylation of Akt and ERK1/2, and pretreatment of the cells with specific small interferin RNA (siRNA) to silence the genes encoding these kinases, or with selective pharmacologic inhibitors, blocked PA-stimulated myoblast proliferation. The mitogenic effects of PA were abolished by the preincubation of the myoblasts with pertussis toxin, a Gi protein inhibitor, suggesting the implication of Gi protein-coupled receptors in this action. Although some of the effects of PA have been associated with its possible conversion to lysoPA (LPA), treatment of the myoblasts with PA for up to 60 min did not produce any significant amount of LPA in these cells. Of interest, pharmacological blockade of the LPA receptors 1 and 2, or specific siRNA to silence the genes encoding these receptors, abolished PA-stimulated myoblast proliferation. Moreover, PA was able to compete with LPA for binding to LPA receptors, suggesting that PA can act as a ligand of LPA receptors. It can be concluded that PA stimulates myoblast proliferation through interaction with LPA1 and LPA2 receptors and the subsequent activation of the PI3K/Akt and MEK/ERK1-2 pathways, independently of LPA formation.


2021 ◽  
Author(s):  
Tao Wang ◽  
Kai Sun ◽  
Zhanxiong Luo ◽  
Rixin Chen ◽  
Jingzhang Li

Abstract Background: LPA and its receptors play a major role in adjusting malignant behaviors in breast cancer (BC). Abnormal expression of certain LPA receptors in BC indicate that LPA receptors could be novel potential biomarkers in predicting prognosis and progression of BC. Further studies would focus on molecular mechanisms of LPA receptors in BC.Results: In this study, we examined the transcription and survival data of BC patient LPARs from ONCOMINE, Kaplan-Meier plotter, GEPIA, bcGenEx-Miner and cBioPortal database. We revealed that LPAR2/3/5 expression levels in BC tissue were higher than that in normal breast tissue, whereas the expression levels of LPAR1/4/6 in BC tissue were lower than normal breast tissue. The expression levels of LPAR1/4/6 were associated with advanced-stage tumor. Survival analysis using the K-M plotter database showed that in all BC patients, high mRNA expression of LPAR1/4/5/6 and the low mRNA expression of LPAR2/3 were correlated with the improved outcomes of BC patients. Subgroup analyses based on clinicopathological factors further revealed relationship between the expression levels of LPARs and the prognosis of BC patients with different types.Conclusions: This study shows that LPAR2/3/5 are potential targets for precision treatment of BC patients, and six LPARs are new biomarkers for the prognosis of BC patients.


Author(s):  
Kuan-Hung Lin ◽  
Jui-Chung Chiang ◽  
Wei-Min Chen ◽  
Ya-Hsuan Ho ◽  
Chao-Ling Yao ◽  
...  

Lysophosphatidic acid (LPA) is one of the lipids identified to be involved in stem cell differentiation. It exerts various functions through activation of G protein-coupled LPA receptors (LPARs). In previous studies, we have demonstrated that activation of LPA receptor 3 (LPA3) promotes erythropoiesis in human HSCs and zebrafish using molecular andpharmacological approaches. Our results show that treatment of LPA2 agonist suppressed erythropoiesis, whereas activation of LPA3 by 2S-OMPT promoted it, both in vitro and in vivo. Furthermore, we have demonstrated the inhibitory role of LPA3 during megakaryopoiesis. However, the mechanism underlying these observation remains elusive. In the present study, we suggest that the expression pattern of LPARs may be correlated with the transcriptional factors GATA-1 and GATA-2 at different stages of myeloid progenitors. We determined that manipulation of GATA factors affected the expression levels of LPA2 and LPA3. Using luciferase assays, we demonstrate that the promoter regions of LPAR2 and LPAR3 were regulated by these GATA factors. Mutation of GATA binding sites in these regions abrogated luciferase activity, suggesting that LPA2 and LPA3 are regulated by GATA factors. Moreover, physical interaction between GATA factors and the promoter region of LPA receptors was verified using chromatin immunoprecipitation (ChIP) studies. Taken together, our results suggest that balance between LPA2 and LPA3, which may be determined by GATA factors, is a regulatory switch for lineage commitment in myeloid progenitors. The expression-level balance of LPA receptor subtypes represents a novel mechanism regulating erythropoiesis and megakaryopoiesis.


Sign in / Sign up

Export Citation Format

Share Document