scholarly journals Fracture characterization of continuous fibre-reinforced polymer matrix composite laminates by Nuclear Magnetic Resonance

2016 ◽  
Vol 2 ◽  
pp. 136-143 ◽  
Author(s):  
J.R. Tarpani ◽  
C.L. Alves ◽  
J.S. Oliveira ◽  
E.L.G. Vidoto ◽  
A. Tannús
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Raj Kumar Pittala ◽  
Satish Ben B. ◽  
Syam Kumar Chokka ◽  
Niranjan Prasad

Purpose Microcapsule-embedded autonomic healing materials have the ability to repair microcracks when they come into contact with the crack by releasing the healing agent. The microcapsules with specific shape and thickness effect in releasing healing agent to the cracked surfaces. Thus, the purpose of this paper is to know the load bearing capacity of the self-healing microcapsules and the stresses developed in the material. Design/methodology/approach In the present study, self-healing microcapsule is modelled and integrated with the polymer matrix composite. The aim of the present study is to investigate failure criteria of Poly (methyl methacrylate) microcapsules by varying the shell thickness, capsule diameter and loading conditions. The strength of the capsule is evaluated by keeping the shell thickness as constant and varying the capsule diameter. Uniformly distributed pressure loads were applied on the capsule-reinforced polymer matrix composite to assess the failure strength of capsules and composite. Findings It is observed from the results that the load required to break the capsules is increasing with the increase in capsule diameter. The failure strength of microcapsule with 100 µm diameter and 5 µm thickness is observed as 255 MPa. For an applied load range of 40–160 N/mm2 on the capsules embedded composite, the maximum stress developed in the capsules is observed as 308 MPa. Originality/value Failure strengths of microcapsules and stresses developed in the microcapsule-reinforced polymer composites were evaluated.


Author(s):  
Dhiraj Kumar ◽  
Kalyan Kumar Singh

Laser machining of carbon fibre reinforced polymer composites is a challenging task due to a significant difference between physical and thermal properties of the constituent materials, i.e. polymer matrix and carbon fibres. This results in extended heat-affected zone (HAZ), taper kerf and poor surface finishing. This paper focuses on an investigation, attempting to minimise the divergence in the decomposition temperature of carbon fibres and epoxy resin by adding multi-walled carbon nanotubes in polymer matrix as a secondary reinforcement. High thermal conductivity of multi-walled carbon nanotubes increases the thermal diffusivity of polymer matrix, which in turn reduces the matrix recession. In addition, laser power and scan speed was also considered as an input parameter and their influence on output responses such as HAZ, taper angle and surface roughness has been studied. To analyse the effect of multi-walled carbon nanotubes on the resultant thermal damage, an innovative technique, i.e. scanning acoustic microscopy was used. This technique provides a ply-by-ply damage analysis. C-scans of the top and bottom surface of the machined holes in the composite were also carried out. Further, micrographs of the holes were taken to analyse the quality of the holes using field-emission scanning electron microscope. The obtained results indicated that HAZ, taper angle and surface roughness of holes decreased by ∼30%, ∼47% and ∼43%, respectively, with 1.5 wt% multi-walled carbon nanotubes doped carbon fibre reinforced polymer laminates, when compared with the results obtained from experiments with neat carbon fibre reinforced polymer composite laminates.


Sign in / Sign up

Export Citation Format

Share Document