scholarly journals Creatine nitrate supplementation strengthens energy status and delays glycolysis of broiler muscle via inhibition of LKB1/AMPK pathway

2021 ◽  
pp. 101653
Author(s):  
B.B. Duan ◽  
J.W. Xu ◽  
T. Xing ◽  
J.L. Li ◽  
L. Zhang ◽  
...  
2014 ◽  
pp. 92-105
Author(s):  
P. Bezrukikh ◽  
P. Bezrukikh (Jr.)

The article analyzes the dynamics of consumption of primary energy and production of electrical energy in the world for 1973-2012 and the volume of renewable energy. It is shown that in the crisis year of 20 0 9 there was a significant reduction in primary energy consumption and production of electrical energy. At the same time, renewable energy has developed rapidly, well above the rate of the world economy growth. The development of renewable energy is one of the most effective ways out of the crisis, taking into account its production regime, energy, environmental, social and economic efficiency. The forecast for the development of renewable energy for the period up to 2020, compiled by the IEA, is analyzed. It is shown that its assessment rates are conservative; the authors justify higher rates of development of renewable energy.


2011 ◽  
Vol 301 (6) ◽  
pp. E1236-E1242 ◽  
Author(s):  
Gabriel J. Wilson ◽  
Donald K. Layman ◽  
Christopher J. Moulton ◽  
Layne E. Norton ◽  
Tracy G. Anthony ◽  
...  

Muscle protein synthesis (MPS) increases after consumption of a protein-containing meal but returns to baseline values within 3 h despite continued elevations of plasma amino acids and mammalian target of rapamycin (mTORC1) signaling. This study evaluated the potential for supplemental leucine (Leu), carbohydrates (CHO), or both to prolong elevated MPS after a meal. Male Sprague-Dawley rats (∼270 g) trained to consume three meals daily were food deprived for 12 h, and then blood and gastrocnemius muscle were collected 0, 90, or 180 min after a standard 4-g test meal (20% whey protein). At 135 min postmeal, rats were orally administered 2.63 g of CHO, 270 mg of Leu, both, or water (sham control). Following test meal consumption, MPS peaked at 90 min and then returned to basal ( time 0) rates at 180 min, although ribosomal protein S6 kinase and eIF4E-binding protein-1 phosphorylation remained elevated. In contrast, rats administered Leu and/or CHO supplements at 135 min postmeal maintained peak MPS through 180 min. MPS was inversely associated with the phosphorylation states of translation elongation factor 2, the “cellular energy sensor” adenosine monophosphate-activated protein kinase-α (AMPKα) and its substrate acetyl-CoA carboxylase, and increases in the ratio of AMP/ATP. We conclude that the incongruity between MPS and mTORC1 at 180 min reflects a block in translation elongation due to reduced cellular energy. Administering Leu or CHO supplements ∼2 h after a meal maintains cellular energy status and extends the postprandial duration of MPS.


2020 ◽  
pp. 1-8
Author(s):  
Amira Rachah ◽  
Olav Reksen ◽  
Nils Kristian Afseth ◽  
Valeria Tafintseva ◽  
Sabine Ferneborg ◽  
...  

Abstract The objective of the study was to evaluate the potential of Fourier transform infrared spectroscopy (FTIR) analysis of milk samples to predict body energy status and related traits (energy balance (EB), dry matter intake (DMI) and efficient energy intake (EEI)) in lactating dairy cows. The data included 2371 milk samples from 63 Norwegian Red dairy cows collected during the first 105 days in milk (DIM). To predict the body energy status traits, calibration models were developed using Partial Least Squares Regression (PLSR). Calibration models were established using split-sample (leave-one cow-out) cross-validation approach and validated using an external test set. The PLSR method was implemented using just the FTIR spectra or using the FTIR together with milk yield (MY) or concentrate intake (CONCTR) as predictors of traits. Analyses were conducted for the entire first 105 DIM and separately for the two lactation periods: 5 ≤ DIM ≤ 55 and 55 < DIM ≤ 105. To test the models, an external validation using an independent test set was performed. Predictions depending on the parity (1st, 2nd and 3rd-to 6th parities) in early lactation were also investigated. Accuracy of prediction (r) for both cross-validation and external test set was defined as the correlation between the predicted and observed values for body energy status traits. Analyzing FTIR in combination with MY by PLSR, resulted in relatively high r-values to estimate EB (r = 0.63), DMI (r = 0.83), EEI (r = 0.84) using an external validation. Only moderate correlations between FTIR spectra and traits like EB, EEI and dry matter intake (DMI) have so far been published. Our hypothesis was that improvements in the FTIR predictions of EB, EEI and DMI can be obtained by (1) stratification into different stages of lactations and different parities, or (2) by adding additional information on milking and feeding traits. Stratification of the lactation stages improved predictions compared with the analyses including all data 5 ≤ DIM ≤105. The accuracy was improved if additional data (MY or CONCTR) were included in the prediction model. Furthermore, stratification into parity groups, improved the predictions of body energy status. Our results show that FTIR spectral data combined with MY or CONCTR can be used to obtain improved estimation of body energy status compared to only using the FTIR spectra in Norwegian Red dairy cattle. The best prediction results were achieved using FTIR spectra together with MY for early lactation. The results obtained in the study suggest that the modeling approach used in this paper can be considered as a viable method for predicting an individual cow's energy status.


Sign in / Sign up

Export Citation Format

Share Document