Knee valgus alignment influences the energy absorption on the hip joint during a drop vertical jump

2017 ◽  
Vol 28 ◽  
pp. e2-e3
Author(s):  
Akihiro Tamura ◽  
Kiyokazu Akasaka ◽  
Takahiro Otsudo
2020 ◽  
Vol 10 (23) ◽  
pp. 8742
Author(s):  
Akihiro Tamura ◽  
Kiyokazu Akasaka ◽  
Takahiro Otsudo

Landing with the knee in a valgus position may alter energy absorption strategies in the lower extremities and increase mechanical stress on the knee joint. We compared the energy absorption strategies in the lower extremities during valgus and varus landings. Seventeen females were divided into valgus and varus groups. Lower extremity kinetic data were obtained during drop jumps, using a three-dimensional motion analysis system. Negative mechanical work in the lower extremities were calculated during landing. The valgus group exhibited significantly more negative mechanical work at the knee, and less negative mechanical work at the hip, compared with the varus group. However, there was no difference in the negative mechanical work at the ankle between the two groups. Findings suggest that an increased valgus landing reduces the contribution of the hip to energy absorption and is associated with a reciprocal increased contribution by the knee. Hence a knee valgus landing position may be a key biomechanical factor that increases energy absorption in the knee, thereby increasing the risk of injury. Results further indicate that this can be prevented by adopting a knee varus position on landing, which facilitates absorption of the mechanical load at the hip, rather than at the knee.


2014 ◽  
Vol 46 ◽  
pp. 407 ◽  
Author(s):  
Eric Schussler ◽  
Ajit M. Chaudhari ◽  
Nelson Cortes ◽  
Thomas M. Best ◽  
James R. Borchers ◽  
...  

2020 ◽  
Vol 29 (2) ◽  
pp. 186-191
Author(s):  
Akihiro Tamura ◽  
Kiyokazu Akasaka ◽  
Takahiro Otsudo

Context: Excessive knee valgus on landing can cause anterior cruciate ligament injury. Therefore, knee valgus alignment may show characteristic energy absorption patterns during landings with lateral movement that impose greater impact forces on the knee joint compared with landings in other alignments. Objective: To investigate the energy absorption strategy in lower-extremities during side steps in females with knee valgus alignment. Design: Controlled laboratory study. Setting: University research laboratory. Participants: A total of 34 female college students participated in this experiment. Interventions: Participants performed single-leg drop vertical jump and side steps. All participants were divided into valgus (n = 13), neutral (n = 9), and varus (n = 12) groups according to knee position during landing in single-leg drop vertical jumps. Main Outcome Measures: Lower-extremity joint angles, moments, and negative works were calculated during landing in side steps, and 1-way analysis of variance and post hoc tests were used to determine between-group differences. Results: Negative works of hip extensors, knee abductors, and ankle plantar flexors during landing in side steps were significantly smaller in the valgus than in the varus group; however, negative work of the knee extensors was significantly greater in the valgus group than in varus group. Conclusions: The findings of this study indicated that landing with knee valgus induced the characteristic energy absorption strategy in the lower-extremity. Knee extensors contributed more to energy absorption when landing in knee valgus than in knee varus alignment. Learning to land in knee varus alignment might reduce the impact on the knee joint by increasing the energy absorption capacities of hip extensors, knee abductors, and ankle plantar flexors.


Physiotherapy ◽  
2015 ◽  
Vol 101 ◽  
pp. e213-e214
Author(s):  
F.-H. Chang ◽  
K.-T. Huang ◽  
W.-Y. Chen ◽  
Y.-F. Shih

2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0015
Author(s):  
Cody R. Criss ◽  
Dustin R. Grooms ◽  
Jed A. Diekfuss ◽  
Manish Anand ◽  
Alexis B. Slutsky-Ganesh ◽  
...  

Background: Anterior cruciate ligament (ACL) injuries predominantly occur via non-contact mechanisms, secondary to motor coordination errors resulting in aberrant frontal plane knee loads that exceed the thresholds of ligament integrity. However, central nervous system processing underlying high injury-risk motor coordination errors remain unknown, limiting the optimization of current injury reduction strategies. Purpose: To evaluate the relationships between brain activity during motor tasks with injury-risk loading during a drop vertical jump. Methods: Thirty female high school soccer players (16.10 ± 0.87 years, 165.10 ± 4.64 cm, 63.43 ± 8.80 kg) were evaluated with 3D biomechanics during a standardized drop vertical jump from a 30 cm box and peak knee abduction moment was extracted as the injury-risk variable of interest. A neuroimaging session to capture neural activity (via blood-oxygen-level-dependent signal) was then completed which consisted of 4 blocks of 30 seconds of repeated bilateral leg press action paced to a metronome beat of 1.2 Hz with 30 seconds rest between blocks. Knee abduction moment was evaluated relative to neural activity to identify potential neural contributors to injury-risk. Results: There was a direct relationship between increased landing knee abduction moment and increased neural activation within regions corresponding to the lingual gyrus, intracalcarine cortex, posterior cingulate cortex, and precuneus (r2= 0.68, p corrected < .05, z max > 3.1; Table 1 & Figure 1). Conclusion: Elevated activity in regions that integrate sensory, spatial, and attentional information may contribute to elevated frontal plane knee loads during landing. Interestingly, a similar activation pattern related to high-risk landing mechanics has been found in those following injury, indicating that predisposing factors to injury may be accentuated by injury or that modern rehabilitation does not recover prospective neural control deficits. These data uncover a potentially novel brain marker that could guide the discovery of neural-therapeutic targets that reduce injury risk beyond current prevention methods. [Table: see text][Figure: see text]


2019 ◽  
Vol 28 (4) ◽  
Author(s):  
Brad W. Willis ◽  
Katie Hocker ◽  
Swithin Razu ◽  
Aaron D. Gray ◽  
Marjorie Skubic ◽  
...  

Context: Knee abduction angle (KAA), as measured by 3-dimensional marker-based motion capture systems during jump-landing tasks, has been correlated with an elevated risk of anterior cruciate ligament injury in females. Due to the high cost and inefficiency of KAA measurement with marker-based motion capture, surrogate 2-dimensional frontal plane measures have gained attention for injury risk screening. The knee-to-ankle separation ratio (KASR) and medial knee position (MKP) have been suggested as potential frontal plane surrogate measures to the KAA, but investigations into their relationship to the KAA during a bilateral drop vertical jump task are limited. Objective: To investigate the relationship between KASR and MKP to the KAA during initial contact of the bilateral drop vertical jump. Design: Descriptive. Setting: Biomechanics laboratory. Participants: A total of 18 healthy female participants (mean age: 24.1 [3.88] y, mass: 65.18 [10.34] kg, and height: 1.63 [0.06] m). Intervention: Participants completed 5 successful drop vertical jump trials measured by a Vicon marker-based motion capture system and 2 AMTI force plates. Main Outcome Measure: For each jump, KAA of the tibia relative to the femur was measured at initial contact along with the KASR and MKP calculated from planar joint center data. The coefficient of determination (r2) was used to examine the relationship between the KASR and MKP to KAA. Results: A strong linear relationship was observed between MKP and KAA (r2 = .71), as well as between KASR and KAA (r2 = .72). Conclusions: Two-dimensional frontal plane measures show strong relationships to the KAA during the bilateral drop vertical jump.


2019 ◽  
Vol 68 ◽  
pp. 346-351 ◽  
Author(s):  
Guilherme S. Nunes ◽  
Christian John Barton ◽  
Fábio Viadanna Serrão

Sign in / Sign up

Export Citation Format

Share Document