scholarly journals Energy Absorption Strategies in the Lower Extremities during Double-Leg Landings in Knee Valgus Alignment

2020 ◽  
Vol 10 (23) ◽  
pp. 8742
Author(s):  
Akihiro Tamura ◽  
Kiyokazu Akasaka ◽  
Takahiro Otsudo

Landing with the knee in a valgus position may alter energy absorption strategies in the lower extremities and increase mechanical stress on the knee joint. We compared the energy absorption strategies in the lower extremities during valgus and varus landings. Seventeen females were divided into valgus and varus groups. Lower extremity kinetic data were obtained during drop jumps, using a three-dimensional motion analysis system. Negative mechanical work in the lower extremities were calculated during landing. The valgus group exhibited significantly more negative mechanical work at the knee, and less negative mechanical work at the hip, compared with the varus group. However, there was no difference in the negative mechanical work at the ankle between the two groups. Findings suggest that an increased valgus landing reduces the contribution of the hip to energy absorption and is associated with a reciprocal increased contribution by the knee. Hence a knee valgus landing position may be a key biomechanical factor that increases energy absorption in the knee, thereby increasing the risk of injury. Results further indicate that this can be prevented by adopting a knee varus position on landing, which facilitates absorption of the mechanical load at the hip, rather than at the knee.

Author(s):  
Dan Dan Qian ◽  
Yun Tao Li ◽  
Yang Shu ◽  
Yao Dong Gu ◽  
Yan Zhang ◽  
...  

The purpose of this study was to explore the balance of different condition of grounds through changing the inclines, and investigate the influence of lower extremities in different inclines. 20 healthy young males were taken as experimental participants. The Six-degree-of-freedom Motion Platform was taken to change the inclines to: -5°,0°,5°,10°. The Vicon three-dimension motion analysis system was utilized to capture the spatiotemporal parameters and the three-dimensional coordinates of lower extremities. On uphill, incline had no significant impact on balance. But tortuosity of hip and knee could significantly increase with the incline. On downhill, balance was significantly less than flat. Tortuosity of knee joint was significant larger than it on the flat ground. The mobility of hip and knee joint was large on uphill; the mobility of knee is large on downhill, but the balance was reduced. These could provide useful biomechanics information on clinical evaluation with dynamic balance. The result might have great significance to the lower extremities rehabilitation.


2012 ◽  
Vol 35 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Jonathan Sinclair ◽  
Paul John Taylor ◽  
Andrew Greenhalgh ◽  
Christopher James Edmundson ◽  
Darrell Brooks ◽  
...  

Three-dimensional (3-D) kinematic analyses are used widely in both sport and clinical examinations. However, this procedure depends on reliable palpation of anatomical landmarks and mal-positioning of markers between sessions may result in improperly defined segment co-ordinate system axes which will produce in-consistent joint rotations. This had led some to question the efficacy of this technique. The aim of the current investigation was to assess the reliability of the anatomical frame definition when quantifying 3-D kinematics of the lower extremities during running. Ten participants completed five successful running trials at 4.0 m·s-1 ± 5%. 3-D angular joint kinematics parameters from the hip, knee and ankle were collected using an eight camera motion analysis system. Two static calibration trials were captured. The first (test) was conducted prior to the running trials following which anatomical landmarks were removed. The second was obtained following completion of the running trials where anatomical landmarks were re-positioned (retest). Paired samples t-tests were used to compare 3-D kinematic parameters quantified using the two static trials, and intraclass correlations were employed to examine the similarities between the sagittal, coronal and transverse plane waveforms. The results indicate that no significant (p>0.05) differences were found between test and retest 3-D kinematic parameters and strong (R2≥0.87) correlations were observed between test and retest waveforms. Based on the results obtained from this investigation, it appears that the anatomical co-ordinate axes of the lower extremities can be defined reliably thus confirming the efficacy of studies using this technique.


Author(s):  
Akihiro Tamura ◽  
Kiyokazu Akasaka ◽  
Takahiro Otsudo

Soft landing after jumping is associated with the prevention of lower extremity injuries during sports activities in terms of the energy absorption mechanisms. In this study, the contribution of lower extremity joints during soft landing was investigated. Subjects comprised 20 healthy females. Kinetics and kinematics data were obtained during drop vertical jumps using a three-dimensional motion analysis system. Negative mechanical work values in the lower extremity joints were calculated during landing. A multiple regression analysis was performed to determine which lower extremity joints contributed more in achieving soft landing. The means of mechanical work of the hip, knee, and ankle in the sagittal plane were −0.30 ± 0.17, −0.62 ± 0.31, and −1.03 ± 0.22 J/kg, respectively. Results showed that negative mechanical work in the hip and knee is effective in achieving soft landing. These findings indicate that energy absorption in the hip and knee joints might be an important factor in achieving soft landing, whereas that in the ankle has a negative effect. Therefore, when improving soft landing techniques, we should consider energy absorption in the hip and knee via eccentric activation of the hip and knee extensors during landing.


2020 ◽  
Vol 29 (2) ◽  
pp. 186-191
Author(s):  
Akihiro Tamura ◽  
Kiyokazu Akasaka ◽  
Takahiro Otsudo

Context: Excessive knee valgus on landing can cause anterior cruciate ligament injury. Therefore, knee valgus alignment may show characteristic energy absorption patterns during landings with lateral movement that impose greater impact forces on the knee joint compared with landings in other alignments. Objective: To investigate the energy absorption strategy in lower-extremities during side steps in females with knee valgus alignment. Design: Controlled laboratory study. Setting: University research laboratory. Participants: A total of 34 female college students participated in this experiment. Interventions: Participants performed single-leg drop vertical jump and side steps. All participants were divided into valgus (n = 13), neutral (n = 9), and varus (n = 12) groups according to knee position during landing in single-leg drop vertical jumps. Main Outcome Measures: Lower-extremity joint angles, moments, and negative works were calculated during landing in side steps, and 1-way analysis of variance and post hoc tests were used to determine between-group differences. Results: Negative works of hip extensors, knee abductors, and ankle plantar flexors during landing in side steps were significantly smaller in the valgus than in the varus group; however, negative work of the knee extensors was significantly greater in the valgus group than in varus group. Conclusions: The findings of this study indicated that landing with knee valgus induced the characteristic energy absorption strategy in the lower-extremity. Knee extensors contributed more to energy absorption when landing in knee valgus than in knee varus alignment. Learning to land in knee varus alignment might reduce the impact on the knee joint by increasing the energy absorption capacities of hip extensors, knee abductors, and ankle plantar flexors.


Author(s):  
Alexis Ortiz ◽  
Martin Rosario-Canales ◽  
Alejandro Rodríguez ◽  
Alexie Seda ◽  
Carla Figueroa ◽  
...  

2001 ◽  
Vol 45 (5) ◽  
pp. 465
Author(s):  
Myong Kwan Ko ◽  
Hee Lee ◽  
Sung Gwon Kang ◽  
Jeong Yeol Choi ◽  
Ju Nam Byun ◽  
...  

Author(s):  
Ali Mohammed Alzahrani ◽  
Msaad Alzhrani ◽  
Saeed Nasser Alshahrani ◽  
Wael Alghamdi ◽  
Mazen Alqahtani ◽  
...  

This study aimed to systematically review research investigating the association between hip muscle strength and dynamic knee valgus (DKV). Four databases (MEDLINE, PubMed, CINAHL, and SPORTDiscus) were searched for journal articles published from inception to October 2020. Seven studies investigating the association between hip muscle strength and DKV using a two-dimensional motion analysis system in healthy adults were included. The relationship between hip abductor muscle strength and DKV was negatively correlated in two studies, positively correlated in two studies, and not correlated in three studies. The DKV was associated with reduced hip extensor muscle strength in two studies and reduced hip external rotator muscle strength in two studies, while no correlation was found in three and five studies for each muscle group, respectively. The relationship between hip muscle strength, including abductors, extensors, and external rotators and DKV is conflicting. Considering the current literature limitations and variable methodological approaches used among studies, the clinical relevance of such findings should be interpreted cautiously. Therefore, future studies are recommended to measure the eccentric strength of hip muscles, resembling muscular movement during landing. Furthermore, high-demand and sufficiently challenging functional tasks revealing lower limb kinematic differences, such as cutting and jumping tasks, are recommended for measuring the DKV.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1242
Author(s):  
Georg Haider ◽  
Ursula Schulz ◽  
Nikola Katic ◽  
Christian Peham ◽  
Gilles Dupré

Single-port access systems (SPASs) are currently used in human and veterinary surgeries. However, they pose technical challenges, such as instrument crowding, intra- and extracorporeal instrument collision, and reduced maneuverability. Studies comparing the maneuverability of the scopes and instruments in different SPASs are lacking. This study aimed to compare the maneuverability of three different SPASs: the Covidien SILS-port, Storz Endocone, and glove port. A clear acrylic box with artificial skin placed at the bottom was used to mimic the abdominal wall and cavity. The three SPASs were placed from below, and a 10-mm endoscope and 5-mm instrument were introduced. A motion analysis system consisting of 18 cameras and motion analysis software were used to track the movement of the endoscope and instrument, to determine the volume of the cone-shaped, three-dimensional figures over which movement was possible, with higher values indicating greater maneuverability. The Mann–Whitney U test was used for the analysis. The maneuverability of the endoscope alone was significantly higher in the glove port system than in the other two SPASs. When inserting an additional instrument, the maneuverability significantly decreased in the SILS-port and Endocone, but not in the glove port. The highest maneuverability overall was found in the glove port.


Sign in / Sign up

Export Citation Format

Share Document