A coccolithophore based view on paleoenvironmental changes in the open ocean mid-latitude North Atlantic between 130 and 48 ka BP with special emphasis on MIS 5e

2013 ◽  
Vol 81 ◽  
pp. 35-47 ◽  
Author(s):  
C. Schwab ◽  
H. Kinkel ◽  
M. Weinelt ◽  
J. Repschläger
2015 ◽  
Vol 12 (8) ◽  
pp. 2597-2605 ◽  
Author(s):  
J. Karstensen ◽  
B. Fiedler ◽  
F. Schütte ◽  
P. Brandt ◽  
A. Körtzinger ◽  
...  

Abstract. Here we present first observations, from instrumentation installed on moorings and a float, of unexpectedly low (<2 μmol kg−1) oxygen environments in the open waters of the tropical North Atlantic, a region where oxygen concentration does normally not fall much below 40 μmol kg−1. The low-oxygen zones are created at shallow depth, just below the mixed layer, in the euphotic zone of cyclonic eddies and anticyclonic-modewater eddies. Both types of eddies are prone to high surface productivity. Net respiration rates for the eddies are found to be 3 to 5 times higher when compared with surrounding waters. Oxygen is lowest in the centre of the eddies, in a depth range where the swirl velocity, defining the transition between eddy and surroundings, has its maximum. It is assumed that the strong velocity at the outer rim of the eddies hampers the transport of properties across the eddies boundary and as such isolates their cores. This is supported by a remarkably stable hydrographic structure of the eddies core over periods of several months. The eddies propagate westward, at about 4 to 5 km day−1, from their generation region off the West African coast into the open ocean. High productivity and accompanying respiration, paired with sluggish exchange across the eddy boundary, create the "dead zone" inside the eddies, so far only reported for coastal areas or lakes. We observe a direct impact of the open ocean dead zones on the marine ecosystem as such that the diurnal vertical migration of zooplankton is suppressed inside the eddies.


2010 ◽  
Vol 7 (1) ◽  
pp. 177-205
Author(s):  
K. Fennel

Abstract. Continental shelves play a key role in the cycling of nitrogen and carbon. Here the physical transport and biogeochemical transformation processes affecting the fluxes into and out of continental shelf systems are reviewed, and their role in the global cycling of both elements is discussed. Uncertainties in observation-based estimates of nitrogen and carbon fluxes mostly result from uncertainties in the shelf-open ocean exchange of organic and inorganic matter, which is hard to quantify based on observations alone, but can be inferred from biogeochemical models. Model-based nitrogen and carbon budgets are presented for the Northwestern North Atlantic continental shelf. Results indicate that shelves are an important sink for fixed nitrogen and a source of alkalinity, but are not much more efficient in exporting organic carbon to the deep ocean than the adjacent open ocean for the shelf region considered.


2014 ◽  
Vol 14 (5) ◽  
pp. 7025-7066 ◽  
Author(s):  
W. C. Keene ◽  
J. L. Moody ◽  
J. N. Galloway ◽  
J. M. Prospero ◽  
O. R. Cooper ◽  
...  

Abstract. Since the 1980s, emissions of SO2 and NOx (NO + NO2) from anthropogenic sources in the United States (US) and Europe have decreased significantly suggesting that the export of oxidized S and N compounds from surrounding continents to the atmosphere overlying North Atlantic Ocean (NAO) has also decreased. The chemical compositions of aerosols and precipitation sampled daily on Bermuda (32.27° N, 64.87° W) from 1989 to 1997 and from 2006 to 2009 were evaluated to quantify the magnitudes, significance, and implications of associated tends in atmospheric composition. The chemical data were stratified based on FLEXPART retroplumes into four discrete transport regimes: westerly flow from the eastern North America (NEUS/SEUS); easterly trade-wind flow from northern Africa and the subtropical NAO (Africa); long, open-ocean, anticyclonic flow around the Bermuda High (Oceanic); and transitional flow from the relatively clean open ocean to the polluted northeastern US (North). Based on all data, annual average concentrations of non-sea-salt (nss) SO42- associated with aerosols and annual VWA concentrations in precipitation decreased significantly (by 22 and 49%, respectively) whereas annual VWA concentrations of NH4+ in precipitation increased significantly (by 70%). Corresponding trends in aerosol and precipitation NO3- and of aerosol NH4+ were insignificant. Nss SO42- in precipitation under NEUS/SEUS and Oceanic flow decreased significantly (61% each) whereas corresponding trends in particulate nss SO42- under both flow regimes were insignificant. Trends for precipitation were driven in part by decreasing emissions of SO2 over upwind continents and associated decreases in anthropogenic contributions to nss SO42- concentrations. Under NEUS/SEUS and Oceanic flow, the ratio of anthropogenic to biogenic contributions to to nss SO42- in the column scavenged by precipitation were relatively greater than those in near surface aerosol, which implies that, for these flow regimes, precipitation is a better indicator of overall anthropogenic impacts on the lower troposphere. Particulate nss SO42- under African flow also decreased significantly (34%) whereas the corresponding decrease in nss SO42- associated with precipitation was marginally insignificant. We infer that these trends were driven in part by reductions in the emissions and transport of oxidized S compounds from Europe. The lack of significant trends in NO3- associated with aerosols and precipitation under NEUS/SEUS flow is notable in light of the large decrease (39%) in NOx emissions in the US over the period of record. Rapid chemical processing of oxidized N in marine air contributed to this lack of correspondence. Decreasing ratios of nss SO42- to NH4+ and the significant decreasing trend in precipitation acidity (37%) indicate that the total amount of acidity in the multiphase gas-aerosol system in the western NAO troposphere decreased over the period of record. Decreasing aerosol acidities would have shifted the phase partitioning of total NH3 (NH3 + particulate NH4+) towards the gas phase thereby decreasing the atmospheric lifetime of total NH3 against wet plus dry deposition. The trend of increasing NH4+ in precipitation at Bermuda over the period of record suggests that NH3 emissions from surrounding continents also increased. Decreasing particulate nss SO42- in near-surface air under NEUS/SEUS flow over the period of record suggests a lower limit for net warming in the range of 0.1–0.3 W m-2 resulting from the decreased shortwave scattering and absorption by nss SO42- and associated aerosol constituents.


2015 ◽  
Vol 84 (3) ◽  
pp. 398-414 ◽  
Author(s):  
Carlos Sancho ◽  
Concha Arenas ◽  
Marta Vázquez-Urbez ◽  
Gonzalo Pardo ◽  
María Victoria Lozano ◽  
...  

The drainage area of the Iberian Ranges (NE Spain) houses one of the most extensive Quaternary fluvial tufaceous records in Europe. In this study, tufa deposits in the Añamaza, Mesa, Piedra and Ebrón river valleys were mapped, stratigraphically described and chronologically referenced from U/Th disequilibrium series, amino acid racemization and radiocarbon methods. Tufa deposits accumulated in cascades, barrage-cascades and related damming areas developed in stepped fluvial systems. The maximum frequency of tufa deposition was identified at 120 ka (Marine Oxygen Isotope Stage [MIS] 5e), 102 ka (MIS 5c), 85 ka (~ MIS 5a) and 7 ka (MIS 1), probably under warmer and wetter conditions than today. Additional phases of tufa deposition appear at ~ 353 ka (~ end of MIS 11), 258–180 ka (MIS 7) and 171–154 ka (MIS 6). Although most tufa deposition episodes are clearly correlated with interstadial periods, the occurrence of tufa deposits during the penultimate glaciation (MIS 6) is remarkable, indicating that the onset of this stage was climatically favourable in the Iberian Peninsula. Biostatic conditions and the dynamics of karstic systems regulating tufa deposition seem to be sensitive to the precipitation regime, controlled by shifts in the position of North Atlantic atmospheric belts, and summer insolation, regulated by orbital forcing.


2003 ◽  
Vol 60 (2) ◽  
pp. 211-222 ◽  
Author(s):  
Paul J. Hearty

AbstractOver 100 whole-rock amino acid racemization (AAR) ratios from outcrops around Rottnest Island (32.0° S Latitude near Perth) indicate distinct pulses of eolian deposition during the late Quaternary. Whole-rock d-alloisoleucine/l-isoleucine (A/I) ratios from bioclastic carbonate deposits fall into three distinct modal classes or “aminozones.” The oldest, Aminozone E, averages 0.33 ± 0.04 (n = 21). Red palaeosol and thick calcrete generally cap the Aminozone E deposits. A younger Aminozone C averages 0.22 ± 0.03 (n = 63); comprising two submodes at 0.26 ± 0.01 (n = 14) and 0.21 ± 0.02 (n = 49). Multiple dune sets of this interval are interrupted by relatively weak, brown to tan “protosols.” A dense, dark brown rendzina palaeosol caps the Aminozone C succession. Ratios from Holocene dune and marine deposits (“Aminozone A”) center on 0.11 ± 0.02 (n = 15), comprising submodes of 0.13 ± 0.01 (9) and 0.09 ± 0.01 (6). Calibration of A/I averages from Aminozones E and A are provided by U/Th and 14C radiometric ages of 125,000 yr (marine oxygen isotope stage (MIS) 5e and 2000–6000 14C yr B.P. (MIS 1), respectively. The whole-rock A/I results support periodic deposition initiated during MIS 5e, continuing through MIS 5c, and then peaking at the end of MIS 5a, about 70,000–80,000 yr ago. Oceanographic evidence indicates the area was subjected to much colder conditions during MIS 2–4 (10,000 to 70,000 yr ago), greatly slowing the epimerization rate. Eolianite deposition resumed in the mid Holocene (∼6000 yr ago) up to the present. The A/I epimerization pathway constructed from Rottnest Island shows remarkable similarity to that of Bermuda in the North Atlantic (32° N Latitude). These findings suggest that, like Bermuda, the eolian activity on Rottnest occurred primarily during or shortly after interglacial highstands when the shoreline was near the present datum, rather than during glacial lowstands when the coastline was positioned 10–20 km to the west.


Ocean Science ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 539-548 ◽  
Author(s):  
K. Fennel

Abstract. Continental shelves play a key role in the cycling of nitrogen and carbon. Here the physical transport and biogeochemical transformation processes affecting the fluxes into and out of continental shelf systems are reviewed, and their role in the global cycling of both elements is discussed. Uncertainties in the magnitude of organic and inorganic matter exchange between shelves and the open ocean is a major source of uncertainty in observation-based estimates of nitrogen and carbon fluxes. The shelf-open ocean exchange is hard to quantify based on observations alone, but can be inferred from biogeochemical models. Model-based nitrogen and carbon budgets are presented for the Northwestern North Atlantic continental shelf. Results indicate that shelves are an important sink for fixed nitrogen and a source of alkalinity, but are not much more efficient in exporting organic carbon to the deep ocean than the adjacent open ocean for the shelf region considered.


Sign in / Sign up

Export Citation Format

Share Document