Last interglacial (MIS 5e) surface circulation in the North Atlantic and Nordic seas, based on dinoflagellate cysts

2012 ◽  
Vol 279-280 ◽  
pp. 514
Author(s):  
Nicolas Van Nieuwenhove
2018 ◽  
Vol 14 (11) ◽  
pp. 1639-1651 ◽  
Author(s):  
Gloria M. Martin-Garcia ◽  
Francisco J. Sierro ◽  
José A. Flores ◽  
Fátima Abrantes

Abstract. The southwestern Iberian margin is highly sensitive to changes in the distribution of North Atlantic currents and to the position of oceanic fronts. In this work, the evolution of oceanographic parameters from 812 to 530 ka (MIS20–MIS14) is studied based on the analysis of planktonic foraminifer assemblages from site IODP-U1385 (37∘34.285′ N, 10∘7.562′ W; 2585 m b.s.l.). By comparing the obtained results with published records from other North Atlantic sites between 41 and 55∘ N, basin-wide paleoceanographic conditions are reconstructed. Variations of assemblages dwelling in different water masses indicate a major change in the general North Atlantic circulation during MIS16, coinciding with the definite establishment of the 100 ky cyclicity associated with the mid-Pleistocene transition. At the surface, this change consisted in the redistribution of water masses, with the subsequent thermal variation, and occurred linked to the northwestward migration of the Arctic Front (AF), and the increase in the North Atlantic Deep Water (NADW) formation with respect to previous glacials. During glacials prior to MIS16, the NADW formation was very weak, which drastically slowed down the surface circulation; the AF was at a southerly position and the North Atlantic Current (NAC) diverted southeastwards, developing steep south–north, and east–west, thermal gradients and blocking the arrival of warm water, with associated moisture, to high latitudes. During MIS16, the increase in the meridional overturning circulation, in combination with the northwestward AF shift, allowed the arrival of the NAC to subpolar latitudes, multiplying the moisture availability for ice-sheet growth, which could have worked as a positive feedback to prolong the glacials towards 100 ky cycles.


2003 ◽  
Vol 60 (2) ◽  
pp. 211-222 ◽  
Author(s):  
Paul J. Hearty

AbstractOver 100 whole-rock amino acid racemization (AAR) ratios from outcrops around Rottnest Island (32.0° S Latitude near Perth) indicate distinct pulses of eolian deposition during the late Quaternary. Whole-rock d-alloisoleucine/l-isoleucine (A/I) ratios from bioclastic carbonate deposits fall into three distinct modal classes or “aminozones.” The oldest, Aminozone E, averages 0.33 ± 0.04 (n = 21). Red palaeosol and thick calcrete generally cap the Aminozone E deposits. A younger Aminozone C averages 0.22 ± 0.03 (n = 63); comprising two submodes at 0.26 ± 0.01 (n = 14) and 0.21 ± 0.02 (n = 49). Multiple dune sets of this interval are interrupted by relatively weak, brown to tan “protosols.” A dense, dark brown rendzina palaeosol caps the Aminozone C succession. Ratios from Holocene dune and marine deposits (“Aminozone A”) center on 0.11 ± 0.02 (n = 15), comprising submodes of 0.13 ± 0.01 (9) and 0.09 ± 0.01 (6). Calibration of A/I averages from Aminozones E and A are provided by U/Th and 14C radiometric ages of 125,000 yr (marine oxygen isotope stage (MIS) 5e and 2000–6000 14C yr B.P. (MIS 1), respectively. The whole-rock A/I results support periodic deposition initiated during MIS 5e, continuing through MIS 5c, and then peaking at the end of MIS 5a, about 70,000–80,000 yr ago. Oceanographic evidence indicates the area was subjected to much colder conditions during MIS 2–4 (10,000 to 70,000 yr ago), greatly slowing the epimerization rate. Eolianite deposition resumed in the mid Holocene (∼6000 yr ago) up to the present. The A/I epimerization pathway constructed from Rottnest Island shows remarkable similarity to that of Bermuda in the North Atlantic (32° N Latitude). These findings suggest that, like Bermuda, the eolian activity on Rottnest occurred primarily during or shortly after interglacial highstands when the shoreline was near the present datum, rather than during glacial lowstands when the coastline was positioned 10–20 km to the west.


2017 ◽  
Vol 98 (6) ◽  
pp. 1273-1335 ◽  
Author(s):  
Alexander Plotkin ◽  
Elena Gerasimova ◽  
Hans Tore Rapp

Polymastiidae (Porifera: Demospongiae) of the Nordic and Siberian Seas are revised and compared with the related species of the North Atlantic based on the morphological data from the type and comparative material and the molecular data from fresh samples. Twenty species from six polymastiid genera are recorded. Two species,Polymastia svensenifrom Western Norway andSpinularia njordifrom the Norwegian Sea, are new to science. One species,Polymastia andrica, is new to the Nordic Seas and two species,Polymastiacf.bartlettiandP. penicillus, are new to the Scandinavian Coast. Distribution of the polymastiids in the North Atlantic and Arctic is discussed and the allegedly wide distribution ofSpinularia sarsiiandS. spinulariais questioned.


2019 ◽  
Vol 15 (6) ◽  
pp. 2031-2051 ◽  
Author(s):  
Niccolò Maffezzoli ◽  
Paul Vallelonga ◽  
Ross Edwards ◽  
Alfonso Saiz-Lopez ◽  
Clara Turetta ◽  
...  

Abstract. Although it has been demonstrated that the speed and magnitude of the recent Arctic sea ice decline is unprecedented for the past 1450 years, few records are available to provide a paleoclimate context for Arctic sea ice extent. Bromine enrichment in ice cores has been suggested to indicate the extent of newly formed sea ice areas. Despite the similarities among sea ice indicators and ice core bromine enrichment records, uncertainties still exist regarding the quantitative linkages between bromine reactive chemistry and the first-year sea ice surfaces. Here we present a 120 000-year record of bromine enrichment from the RECAP (REnland ice CAP) ice core, coastal east Greenland, and interpret it as a record of first-year sea ice. We compare it to existing sea ice records from marine cores and tentatively reconstruct past sea ice conditions in the North Atlantic as far north as the Fram Strait (50–85∘ N). Our interpretation implies that during the last deglaciation, the transition from multi-year to first-year sea ice started at ∼17.5 ka, synchronously with sea ice reductions observed in the eastern Nordic Seas and with the increase in North Atlantic ocean temperature. First-year sea ice reached its maximum at 12.4–11.8 ka during the Younger Dryas, after which open-water conditions started to dominate, consistent with sea ice records from the eastern Nordic Seas and the North Icelandic shelf. Our results show that over the last 120 000 years, multi-year sea ice extent was greatest during Marine Isotope Stage (MIS) 2 and possibly during MIS 4, with more extended first-year sea ice during MIS 3 and MIS 5. Sea ice extent during the Holocene (MIS 1) has been less than at any time in the last 120 000 years.


2020 ◽  
Author(s):  
Yue Wu ◽  
David Stevens ◽  
Ian Renfrew ◽  
Xiaoming Zhai

<p>The Nordic Seas have a significant impact on global climate due to their role in providing dense overflows to the North Atlantic Ocean. However, the dramatic loss of sea ice in recent decades is creating a new atmosphere-ice-ocean environment where large swathes of the ocean that were previously ice-covered are now exposed to the atmosphere. Despite the largest sea-ice loss occurring in summer and autumn, the sea-ice loss in winter and spring is arguably more important for the climate system. Atmosphere-ocean coupling is the most intense in the extended winter, when convective mixing leads to water-mass modification processes, impacting the densest waters of the Atlantic Meridional Overturning Circulation. Here we focus on the marginal-ice-zone of the Nordic Seas where the air-sea temperature difference is large, promoting high heat flux events during periods of off-ice winds. We use both transient and control simulations of the coupled climate model HiGEM, which allows us to isolate the climate change response from the sea-ice retreat response. We find that wintertime sea-ice retreat leads to remarkable changes in ocean surface heat exchanges and wind energy input. As the sea ice edge retreats towards the Greenland coastline, there is a band of exposed ocean which was previously covered by ice. This exposure allows enhanced mechanical mixing by the wind and a greater loss of buoyancy from the ocean leading to deeper vertical mixing in the upper ocean. Sensible and latent heat fluxes from the ocean to the atmosphere provide the greatest loss of buoyancy. However, climate warming inhibits this process as the atmosphere warms more rapidly than the ocean which reduces the sea-air temperature difference. Further away from the retreating ice edge, toward the centre of the Greenland Sea, the upper ocean warms, resulting in a more stratified water column. As a consequence, the depth of convective mixing reduces over the deep ocean and increases over shallower regions close to the coast. This leads to changes in the formation and properties of some of the water masses that enter the North Atlantic and thus may modify the ocean circulation in the subpolar seas in response to sea-ice decline. </p>


Sign in / Sign up

Export Citation Format

Share Document