Mesozoic cooling history of the “Bachu Uplift” in the Tarim Basin, China: Constraints from zircon fission-track thermochronology

2014 ◽  
Vol 67 ◽  
pp. 5-14 ◽  
Author(s):  
Jian Chang ◽  
Roderick W. Brown ◽  
Wanming Yuan ◽  
Wenzheng Li ◽  
Yongquan Que ◽  
...  
2013 ◽  
Vol 330 ◽  
pp. 1067-1070
Author(s):  
Hui Xiao ◽  
Wei Han ◽  
Feng Guo

This study uses the application of zircon fission track (ZFT) and apatite fission track (AFT) thermochronometry technique to investigate the tectonic and uplift history of the Kuruketage area, north-east edge of the Tarim Basin. Based on measured ZFT, AFT and equivalent vitrinite reflectance measurements of samples in sedimentary rocks in Kuruketage area, the temperature time evolution history from early Paleozoic strata was modeled. The results show that the youngest peaks of ZFT at 371-392Ma and 328 - 305.7Ma record Hercynian tectonic and uplift event; the AFT peaks at 134.5 - 164Ma, 73 - 100Ma and 35.4Ma mainly represent the Late-Cretaceous tectonic and uplift event in Kuruketage area. The AFT thermal modeling results from the early Paleozoic strata indicate that the maximum paleo-temperature (at 140 215°C) experienced in late Silurian to early Devonian, and the strata temperature decreased to about 120°C before the Late-Cretaceous.


2010 ◽  
Vol 147 (6) ◽  
pp. 801-813 ◽  
Author(s):  
UWE RING ◽  
MATTHIAS BERNET

AbstractWe apply fission-track thermochronology to shed new light on the tectonic history of Zealandia during Late Cretaceous continental extension and the onset of Late Tertiary mountain building in the Southern Alps of New Zealand. The Southern Alps are one of the fastest erosionally exhuming mountain belts on Earth. Exhumation of the Bonar Range in Westland just to the northwest of the Alpine Fault is orders of magnitude slower. We report apatite and zircon fission-track ages from samples that were collected along an ENE–WSW profile across the central Bonar Range, parallel to the tectonic transport direction of a prominent ductile fabric in the basement gneiss. Zircon fission-track (ZFT) ages show a large spread from 121.9 ± 12.1 Ma to 74.9 ± 7.2 Ma (1σ errors). The youngest ZFT ages of 78 to 75 Ma occur at low elevations on either side of the Bonar Range and become older towards the top of the range, thereby showing a symmetric pattern parallel to the ENE-trending profile across the range. Age–elevation relationships suggest an exhumation rate of 50–100 m Ma−1. We relate the ZFT ages to slow erosion of a tectonically inactive spot in the Late Cretaceous magmatic arc of Zealandia. Therefore, the first main significance of the paper is that it demonstrates that not all of 110–90 Ma Zealandia was necessarily participating in extreme core complex-related extension but that there were enclaves of lithosphere that underwent slow erosion. The apatite fission-track (AFT) ages range from 11.1 ± 1.9 Ma to 5.3 ± 1.0 Ma and age–elevation relationships suggest an exhumation rate of c. 200 m Ma−1. We relate the AFT ages to the inception of transpressive motion across the Alpine Fault and modest exhumation in its footwall in Late Miocene times. If so, the second significant point of this paper is that transpressive motion across the Alpine Fault was already under way by c. 11 Ma.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Evgeny V. Vetrov ◽  
Johan De Grave ◽  
Natalia I. Vetrova ◽  
Fedor I. Zhimulev ◽  
Simon Nachtergaele ◽  
...  

The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras.


1998 ◽  
Vol 43 (S1) ◽  
pp. 137-137
Author(s):  
J. L. Wan ◽  
Q. L. Wang ◽  
D. M. Li

Sign in / Sign up

Export Citation Format

Share Document