exhumation rate
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
◽  
Ruohong Jiao

<p>The basement rocks of North Island, New Zealand, comprise metasedimentary terranes that were accreted onto the eastern Gondwana margin during Mesozoic subduction. Since the Oligocene, these terranes have been sitting at the leading edge of the Australian Plate, as the hanging wall of the Hikurangi subduction margin, overriding the subducting Pacific Plate. This thesis examines the thermo-tectonic histories of the basement rocks in North Island, using fission-track and (U-Th-Sm)/He thermochronology.  In eastern North Island, thermochronological data from the basement rocks record the exhumation histories since the latest Jurassic, related to two subduction cycles. Zircon fission-track analysis yields detrital or slightly reset ages (264–102 Ma); apatite fission-track ages range from 122 to 7.9 Ma and (U-Th-Sm)/He from 33.3 to 6.0 Ma.  In central North Island, modelled thermal histories suggest that the basement rocks were exhumed to shallow levels (<2 km) of the crust in the Early Cretaceous (~150–135 Ma). This was followed by a period of reheating until ~100 Ma, which is interpreted to be the result of burial by sedimentation above the accretionary wedge. From 100 Ma, models indicate thermo-tectonic quiescence until the Late Oligocene.  During the late Cenozoic, exhumation of the basement rocks accelerated at ~27 Ma in the western margin of the axial ranges (Kaimanawa Mountains). This acceleration in exhumation rate is interpreted to reflect the initiation of the subduction of the Pacific Plate beneath central North Island. Since the Late Oligocene, basement exhumation in the axial ranges migrated towards the trough. Modelled thermal histories indicate significant eastwards reverse faulting on the margin-parallel Ngamatea Fault between ~27 and 20 Ma and on the Wellington-Mohaka Fault between ~20 and 10 Ma.  In contrast to the activity in the axial ranges, in western North Island, the exhumational response of the basement rocks to the Cenozoic subduction was less significant and not revealed from the present thermochronological data.  Since the Late Miocene, the exhumation rate in the axial ranges has varied significantly along-strike, lower in the centre and higher to the north and south. During the last 10 Myr, the total magnitude of exhumation has been ~4 km in the Wellington region in the south, >1 km in the Raukumara Range in the north and negligible (less than a few hundred metres) in the central axial ranges in the Hawke’s Bay region. Although the accumulation of underplated material at the basal upper plate may have contributed to the localised rock uplift and exhumation (e.g. in the Raukumara Range), margin-normal shortening of the upper plate in the forearc of the Hikurangi Margin has most likely dominated the unroofing process of the axial ranges.  In northwestern North Island, the Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto in situ Mesozoic and early Cenozoic rocks. Detrital zircon and apatite fission-track ages reveal that the basal Northland Allochthon sequences and the underlying Miocene autochthonous sedimentary rocks were predominantly derived from the local Jurassic terrane (Waipapa Supergrop) and perhaps the Late Cretaceous volcanics. In addition, the Early Miocene autochthon contains significant sedimentary influx from the Late Oligocene volcanics related to the subduction initiation in northern New Zealand.  Zircon and apatite fission-track data from the in situ Mesozoic basement were inverted using thermo-kinematic models coupled with an inversion algorithm. The results suggest that during the Late Oligocene, ~4–6 km thick nappes were emplaced onto the in situ rocks in the northernmost Northland region. Prior to basement unroofing in the Early Miocene, the nappes thinned towards the south. Following allochthon emplacement, eastern Northland was uplifted and unroofed rapidly over a period of ~1–6 Myr, leading to ~0.4–1.5 km erosion of the allochthon. Since the mid-Miocene, due to the decline in tectonic activity in this region, the Northland Allochthon and the underlying rocks have been eroded slowly.  This thesis has documented variable exhumation and burial processes that occurred in the upper plates of both the Mesozoic Gondwana and late Cenozoic Hikurangi subduction margins. The results provide the foundation for future studies to investigate the kinematics and mechanism of the crustal exhumation and deformation of the North Island basement in further detail.</p>


2021 ◽  
Author(s):  
◽  
Ruohong Jiao

<p>The basement rocks of North Island, New Zealand, comprise metasedimentary terranes that were accreted onto the eastern Gondwana margin during Mesozoic subduction. Since the Oligocene, these terranes have been sitting at the leading edge of the Australian Plate, as the hanging wall of the Hikurangi subduction margin, overriding the subducting Pacific Plate. This thesis examines the thermo-tectonic histories of the basement rocks in North Island, using fission-track and (U-Th-Sm)/He thermochronology.  In eastern North Island, thermochronological data from the basement rocks record the exhumation histories since the latest Jurassic, related to two subduction cycles. Zircon fission-track analysis yields detrital or slightly reset ages (264–102 Ma); apatite fission-track ages range from 122 to 7.9 Ma and (U-Th-Sm)/He from 33.3 to 6.0 Ma.  In central North Island, modelled thermal histories suggest that the basement rocks were exhumed to shallow levels (<2 km) of the crust in the Early Cretaceous (~150–135 Ma). This was followed by a period of reheating until ~100 Ma, which is interpreted to be the result of burial by sedimentation above the accretionary wedge. From 100 Ma, models indicate thermo-tectonic quiescence until the Late Oligocene.  During the late Cenozoic, exhumation of the basement rocks accelerated at ~27 Ma in the western margin of the axial ranges (Kaimanawa Mountains). This acceleration in exhumation rate is interpreted to reflect the initiation of the subduction of the Pacific Plate beneath central North Island. Since the Late Oligocene, basement exhumation in the axial ranges migrated towards the trough. Modelled thermal histories indicate significant eastwards reverse faulting on the margin-parallel Ngamatea Fault between ~27 and 20 Ma and on the Wellington-Mohaka Fault between ~20 and 10 Ma.  In contrast to the activity in the axial ranges, in western North Island, the exhumational response of the basement rocks to the Cenozoic subduction was less significant and not revealed from the present thermochronological data.  Since the Late Miocene, the exhumation rate in the axial ranges has varied significantly along-strike, lower in the centre and higher to the north and south. During the last 10 Myr, the total magnitude of exhumation has been ~4 km in the Wellington region in the south, >1 km in the Raukumara Range in the north and negligible (less than a few hundred metres) in the central axial ranges in the Hawke’s Bay region. Although the accumulation of underplated material at the basal upper plate may have contributed to the localised rock uplift and exhumation (e.g. in the Raukumara Range), margin-normal shortening of the upper plate in the forearc of the Hikurangi Margin has most likely dominated the unroofing process of the axial ranges.  In northwestern North Island, the Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto in situ Mesozoic and early Cenozoic rocks. Detrital zircon and apatite fission-track ages reveal that the basal Northland Allochthon sequences and the underlying Miocene autochthonous sedimentary rocks were predominantly derived from the local Jurassic terrane (Waipapa Supergrop) and perhaps the Late Cretaceous volcanics. In addition, the Early Miocene autochthon contains significant sedimentary influx from the Late Oligocene volcanics related to the subduction initiation in northern New Zealand.  Zircon and apatite fission-track data from the in situ Mesozoic basement were inverted using thermo-kinematic models coupled with an inversion algorithm. The results suggest that during the Late Oligocene, ~4–6 km thick nappes were emplaced onto the in situ rocks in the northernmost Northland region. Prior to basement unroofing in the Early Miocene, the nappes thinned towards the south. Following allochthon emplacement, eastern Northland was uplifted and unroofed rapidly over a period of ~1–6 Myr, leading to ~0.4–1.5 km erosion of the allochthon. Since the mid-Miocene, due to the decline in tectonic activity in this region, the Northland Allochthon and the underlying rocks have been eroded slowly.  This thesis has documented variable exhumation and burial processes that occurred in the upper plates of both the Mesozoic Gondwana and late Cenozoic Hikurangi subduction margins. The results provide the foundation for future studies to investigate the kinematics and mechanism of the crustal exhumation and deformation of the North Island basement in further detail.</p>


2021 ◽  
Author(s):  
Véronique Gardien ◽  
Jean-Emmanuel Martelat ◽  
Philippe-Herve Leloup ◽  
Gweltaz Mahéo ◽  
Benoit Bevillard ◽  
...  

2021 ◽  
Vol 9 (5) ◽  
pp. 1153-1221
Author(s):  
Sean D. Willett ◽  
Frédéric Herman ◽  
Matthew Fox ◽  
Nadja Stalder ◽  
Todd A. Ehlers ◽  
...  

Abstract. Thermochronometry provides one of few methods to quantify rock exhumation rate and history, including potential changes in exhumation rate. Thermochronometric ages can resolve rates, accelerations, and complex histories by exploiting different closure temperatures and path lengths using data distributed in elevation. We investigate how the resolution of an exhumation history is determined by the distribution of ages and their closure temperatures through an error analysis of the exhumation history problem. We define the sources of error, defined in terms of resolution, model error and methodological bias in the inverse method used by Herman et al. (2013) which combines data with different closure temperatures and elevations. The error analysis provides a series of tests addressing the various types of bias, including addressing criticism that there is a tendency of thermochronometric data to produce a false inference of faster erosion rates towards the present day because of a spatial correlation bias. Tests based on synthetic data demonstrate that the inverse method used by Herman et al. (2013) has no methodological or model bias towards increasing erosion rates. We do find significant resolution errors with sparse data, but these errors are not systematic, tending rather to leave inferred erosion rates at or near a Bayesian prior. To explain the difference in conclusions between our analysis and that of other work, we examine other approaches and find that previously published model tests contained an error in the geotherm calculation, resulting in an incorrect age prediction. Our reanalysis and interpretation show that the original results of Herman et al. (2013) are correctly calculated and presented, with no evidence for a systematic bias.


2021 ◽  
Author(s):  
Eleonora Balkanska ◽  
Stoyan Georgiev ◽  
Alexandre Kounov ◽  
Irena Peytcheva ◽  
Takahiro Tagami ◽  
...  

&lt;p&gt;Sredna Gora Zone in Bulgaria is confined between the Balkan fold-thrust belt to the north and the Rhodope metamorphic complex to the south. The pre-Mesozoic basement of the central parts of the zone consists of Variscan high-grade metamorphic rocks intruded by Late Carboniferous granitoid plutons. They are transgressively overlaid by Triassic epicontinental, arc-related Upper Cretaceous volcaniclastic and Paleocene continental deposits. The Paleogene-Neogene sediments of the Thrace basin cover unconformably the older rock sequences. The zone experienced several compressional and extensional events during the Alpine time followed by post-orogenic extension in the Cenozoic.&lt;/p&gt;&lt;p&gt;We performed apatite fission-track analysis on rocks from the central, topographically highest parts of the Sredna Gora Zone in order to constrain the cooling history of the Variscan basement. With this aim four granitic samples were collected at different altitude (between 565 and 1604 m) from the tectonically uninterrupted section along the slope of Sredna Gora Mountains. The samples were processed and analyzed in the newly established Low-Temperature Thermochronology Laboratory in Bulgaria using LA-ICP-MS technique.&lt;/p&gt;&lt;p&gt;The samples yield apatite FT ages between 41.6 &amp;#177; 2.6 (the highermost sample) and 39.4 &amp;#177; 3.1 (the lowermost sample). The obtained confined mean tracks lengths are between 12.81 and 14.06 &amp;#181;m with standard deviation between 0.99 and 2.11 &amp;#181;m. The Dpar values vary from 1.75 &amp;#181;m to 1.46 &amp;#181;m (with standard deviation of approx. 0.20 &amp;#181;m).&lt;/p&gt;&lt;p&gt;The obtained positive age-altitude correlation suggests indeed that the studied part of the basement has cooled as one single block. The apparent exhumation rate is estimated to 0.46 mm/year. However, the positive Dpar-age correlation implies that the age dispersion could be influenced by apatite kinetic variability and hence relatively different closure temperature for the analysed samples may be suggested. Therefore, we consider the estimated apparent exhumation rate as only the minimum possible rate. The thermal models of the analysed samples (using HeFTy software) also show moderate cooling rates in the period between 45 and 35 Ma. This cooling could be related to the period of post-orogenic denudation and extension during the Eocene, associated with formation of the Thrace basin to the south-southeast. This extensional event, known from the whole Balkan Peninsula, is well documented in the neighbouring Balkan fold-thrust belt and the Rhodope metamorphic complex from where much faster exhumation rates were reported.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgements&lt;/strong&gt;. The study is supported by the grant 04/9 funded by the National Science Fund, Ministry of Education and Science, Bulgaria.&lt;/p&gt;


2021 ◽  
Author(s):  
Richard Spiess ◽  
Antonio Langone ◽  
Alfredo Caggianelli ◽  
Finlay M. Stuart ◽  
Martina Zucchi ◽  
...  

&lt;p&gt;Exhumation and cooling of upper crustal plutons is generally assumed to develop in the brittle domain, thus determining an abrupt passage from crystallization to faulting. To challenge this general statement, we have applied an integrated approach involving meso- and micro-structural studies, thermochronology, geochronology and rheological modeling. We have analyzed the Miocene syn-tectonic Porto Azzurro pluton on Elba (Tuscan archipelago &amp;#8211; Italy), emplaced in an extensional setting, and have realized that its fast exhumation is accompanied by localized ductile shear zones, developing along dykes and veins, later affected by brittle deformation. This is unequivocally highlighted by field studies and the analysis of microstructures with EBSD. In order to constrain the emplacement and exhumation rate of the Porto Azzurro pluton we performed U-Pb zircon dating and (U+Th)/He apatite thermochronology. It results in a magma emplacement age of 6.4 &amp;#177; 0.4 Ma and an exhumation rate of 3.4 to 3.9 mm/yr. By thermo-rheological modeling we were able to establish that localized ductile deformation occurred at two different time steps: within felsic dykes when the pluton first entered into the brittle field at 380 kyr, and along quartz-rich hydrothermal veins at c. 550 kyr after pluton emplacement. Hence, the major conclusion of our data is that ductile deformation can affect a granitic intrusion even when it is entered into the brittle domain in a fast exhuming extensional regime.&lt;/p&gt;


Geosciences ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 375 ◽  
Author(s):  
Matthew Fox ◽  
Andrew Carter

Thermochronometry is widely used to track exhumation, the motion of rock towards Earth’s surface, and to gain fresh insights into geodynamic and geomorphic processes. Applications require models to reconstruct a rock’s cooling history as it is exhumed from higher temperatures at depth within the crust to cooler shallower levels and eventually Earth’s surface. Thermochronometric models are dependent on the predictable accumulation and the temperature-dependent loss of radiogenic daughter products measured in the laboratory. However, there are many geologically reasonable scenarios that will yield very similar thermochronometric ages. This similarity hinders finding the actual scenario, so instead an approximate model is sought. Finding suitable model parameters is a potentially ill-posed inverse problem that requires making decisions about how best to extract information from the data and how to combine data to leverage redundant information and reduce the impact of data noise. Often these decisions lead to differences in conclusions of studies and such discrepancies have led to heated debates. Here, we discuss debates centred on the use of a variety of modelling approaches and potential sources of biases that lead to differences in the predicted exhumation rate. We also provide some suggestions about future research paths that will help resolve these debates.


2020 ◽  
Author(s):  
Sean D. Willett ◽  
Frederic Herman ◽  
Matthew Fox ◽  
Nadja Stalder ◽  
Todd A. Ehlers ◽  
...  

Abstract. Thermochronometry provides one of few methods to quantify rock exhumation rate and history, including potential changes in exhumation rate. Thermochronometric ages can resolve rates, accelerations, and complex histories by exploiting different closure temperatures and path lengths using data distributed in elevation. We investigate how the resolution of an exhumation history is determined by the distribution of ages and their closure temperatures through an error analysis of the exhumation history problem. We define the sources of error, defined in terms of resolution, model error and methodological bias in the inverse method used by Herman et al. (2013) which combines data with different closure temperatures and elevations. The error analysis provides a series of tests addressing the various types of bias, including addressing criticism that there is a tendency of thermochronometric data to produce a false inference of faster erosion rates towards the present day because of a spatial correlation bias (Schildgen et al., 2018). Tests based on synthetic data demonstrate that the inverse method used by Herman et al. (2013) has no methodological or model bias towards increasing erosion rates. We do find significant resolution errors with sparse data, but these errors are not systematic, tending rather to leave inferred erosion rates at or near a Bayesian prior. To explain the difference in conclusions between our analysis and that of Schildgen et al. (2018), we examine their paper and find that their model tests used an incorrect geotherm calculation, invalidating their models. We also found that Schildgen et al. (2018) applied a biased operator to the results of Herman et al. (2013) thereby distorting the original results producing a bias that was falsely attributed to the original inverse model. Our reanalysis and interpretation show that the original results of Herman et al. (2013) are correct and there is no evidence for a systematic bias.


2019 ◽  
Vol 56 (11) ◽  
pp. 1202-1217
Author(s):  
Gürsel Sunal ◽  
Mehmet Korhan Erturaç ◽  
Pınar Gutsuz ◽  
István Dunkl ◽  
Ziyadin Cakir

The Almacık Block is an approximately 73 km long and 21 km wide tectonic sliver formed by the North Anatolian Fault Zone in northwestern Turkey. Morphologically, it is one of the most pronounced structures along the North Anatolian Fault Zone. All the segments bounding the Almacık Block were ruptured during the second half of the 20th century. The fifty-four apatite (U–Th)/He ages we obtained showed that the region including the Almacık Block was exhumed during the Oligo–Miocene interval and then original exhumation pattern was distorted by the North Anatolian Fault Zone during the Miocene to recent. To interpret this distortion and to reconstruct it to the original state, we modelled “Λ”-shaped mountain fronts in the most probable deformation scenarios. The block has been tilted southward about an approximately east–west-trending horizontal (slightly dipping to the east) axis. As a result of this rotation, the northern part of the block has been uplifted about 2800 m, whereas the southern part has subsided about 430 m, likely during the last 2.5 Myr. The exhumation in the studied region started at around 34 Ma and lasted until 16 Ma with a mean exhumation rate of about 60 m/Myr.


Sign in / Sign up

Export Citation Format

Share Document