The removal of natural organic matter from selected Turkish source waters using magnetic ion exchange resin (MIEX®)

2007 ◽  
Vol 67 (12) ◽  
pp. 1495-1504 ◽  
Author(s):  
Mehmet Kitis ◽  
B. İlker Harman ◽  
Nevzat O. Yigit ◽  
Mehmet Beyhan ◽  
Hung Nguyen ◽  
...  
1999 ◽  
Vol 40 (9) ◽  
pp. 183-190 ◽  
Author(s):  
S. G. J. Heijman ◽  
A. M. van Paassen ◽  
W. G. J. van der Meer ◽  
R. Hopman

For the removal of DOC (and colour) several treatment steps are suggested. If it is also necessary to remove hardness nanofiltration is probably the first choice. For colour removal without softening a number of adsorbents are suggested in the literature. In order to estimate the costs of these treatment steps a dynamic column model based on batch experiments was used to predict the service time of the columns filled with different adsorbents. Also the (on site) regeneration of the different adsorbents was investigated in batch experiments. Especially the ion exchange resin was very promising. The costs of the treatment of one m3 water with a column filled with an ion exchange resin was estimated for the investigated case at 0.05 Euro.


2013 ◽  
Vol 361-363 ◽  
pp. 801-804
Author(s):  
Jian Wei Ma ◽  
Ya Rui Song

The objective of this research was to compare enhanced coagulation with anion exchange for removal of natural organic matter (NOM) and bromide. Treatment with a magnetic ion exchange resin (MIEX) was the primary focus of this study. The performance of the magnetic ion exchange resin,MIEX, in the treatment of raw water was investigated. MIEX can effectively remove UV-absorbing substances DOC. The removal of organic substances is accompanied by the elimination of other undesirable components, such as nitrogen and phosphorus. The optimal process parameters are at resin doses of 5-10 mL L1and contact time of 10-15 min, as determined via jartests. Based on this study, MIEX treatment is a suitable and efficient pretreatment method for the removal of extra dissolved organic matters and nitrates in raw water .


2011 ◽  
Vol 64 (11) ◽  
pp. 2325-2332 ◽  
Author(s):  
A. Aryal ◽  
A. Sathasivan

Biological activated carbon (BAC) is operationally a simple treatment which can be employed to remove effluent organic matter (EfOM) from secondary wastewater effluent (SWWE). Unfortunately, BAC removes only a limited amount of dissolved organic carbon (DOC). Thus, maximizing DOC removal from SWWE using BAC is a major concern in wastewater reuse. This study has investigated a hybrid system of BAC and Magnetic Ion Exchange Resin (MIEX®) for the enhanced removal of DOC. Performance of both BAC prior to MIEX® (BAC/MIEX®) and reverse (MIEX®/BAC) combination was evaluated in terms of DOC removal. The BAC/MIEX® showed much better DOC removal. This is because microbial activity in the BAC bed converted MIEX® non-amenable DOC to MIEX® amenable DOC. As a result, BAC/MIEX® combination synergised DOC removal. In addition, BAC was also found to be highly effective in reducing MIEX® dose for a given DOC removal from SWWE.


2011 ◽  
Vol 11 (1) ◽  
pp. 15-22 ◽  
Author(s):  
C. Liu ◽  
W. Chen ◽  
V. M. Robert ◽  
Z. G. Han

Natural organic matter (NOM) fouling continues to be the major barrier to efficient application of ultrafiltration (UF) in drinking water treatment. Algogenic organic matter (AOM), the main contributor to total NOM levels in raw waters characterised by elevated algae levels, is currently the subject of much investigation. In this study, the effect of AOM on fouling of ultrafiltration and the effectiveness of magnetic ion exchange resin (MIEX®) pre-treatment for AOM removal and membrane fouling control was evaluated. The results showed that, the main species of algae in raw water were Chlorella vulgaris, which accounted for 80% of total algae. AOM was predominantly hydrophilic (50% or more) with a low SUVA (1.7 Lm−1 mg−1). Coagulation alone could not remove AOM effectively (less than 20%), however, when combined with magnetic ion exchange resin pre-treatment, more than 60% of AOM was be removed; pre-treatment followed by coagulation was observed to be very effective in controlling membrane fouling by AOM. The application of magnetic ion exchange resin technology at a bed volume treatment rate (BVTR) of 800 was observed to effectively eliminate fouling of UF membrane. Careful analyses of the molecular weight (MW) distribution of AOM and UV absorbance of treated water revealed that the effectiveness in membrane fouling control was the result of the changes in AOM molecular characteristics in treated water, namely a change in MW due to the preferential removal of high molecular proteins by coagulation and magnetic ion exchange resin pre-treatment. The results demonstrate that magnetic ion exchange resin followed by coagulation might be a new membrane pre-treatment option for UF membrane fouling control.


2013 ◽  
Vol 726-731 ◽  
pp. 3185-3188
Author(s):  
Jian Wei Ma ◽  
Ya Rui Song

The objective of this research was to compare enhanced coagulation with anion exchange for removal of natural organic matter (NOM) and bromide. Treatment with a magnetic ion exchange resin (MIEX) was the primary focus of this study. The performance of the magnetic ion exchange resin,MIEX, in the treatment of raw water was investigated. MIEX can effectively remove UV-absorbing substances DOC. The removal of organic substances is accompanied by the elimination of other undesirable components, such as nitrogen and phosphorus. The optimal process parameters are at resin doses of 5-10 mL L1and contact time of 10-15 min, as determined via jartests. Based on this study, MIEX treatment is a suitable and efficient pretreatment method for the removal of extra dissolved organic matters and nitrates in raw water .


2008 ◽  
Vol 42 (8-9) ◽  
pp. 1977-1988 ◽  
Author(s):  
Max R.D. Mergen ◽  
Bruce Jefferson ◽  
Simon A. Parsons ◽  
Peter Jarvis

Sign in / Sign up

Export Citation Format

Share Document