scholarly journals Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms

2021 ◽  
Vol 2 (2) ◽  
pp. 177-188
Author(s):  
Guolin Ma ◽  
Jianli Ding ◽  
Lijng Han ◽  
Zipeng Zhang ◽  
Si Ran
2021 ◽  
Vol 13 (2) ◽  
pp. 305
Author(s):  
Jiaqiang Wang ◽  
Jie Peng ◽  
Hongyi Li ◽  
Caiyun Yin ◽  
Weiyang Liu ◽  
...  

Accurate monitoring of soil salinization plays a key role in the ecological security and sustainable agricultural development of arid regions. As a branch of artificial intelligence, machine learning acquires new knowledge through self-learning and continuously improves its own performance. The purpose of this study is to combine Sentinel-2 Multispectral Imager (MSI) data and MSI-derived covariates with measured soil salinity data and to apply three machine learning algorithms in modeling to estimate and map the soil salinity in the study sample area. According to the convenient transportation conditions, the study area and sampling quadrat were set up, and the 5-point method was used to collect the soil mixed samples, and 160 soil mixed samples were collected. Kennard–Stone (K–S) algorithm was used for sample classification, 70% for modeling and 30% for verification. The machine learning algorithm uses Support Vector Machines (SVM), Artificial Neural Network (ANN), and Random Forest (RF). The results showed that (1) the average reflectance of each band of the MSI data ranged from 0.21–0.28. According to the spectral characteristics corresponding to different soil electrical conductivity (EC) levels (1.07–79.6 dS m−1), the spectral reflectance of salinized soil in the MSI data ranged from 0.09–0.35. (2) The correlation coefficient between the MSI data and MSI-derived covariates and soil EC was moderate, and the correlation between certain MSI data sets and soil EC was not significant. (3) The SVM soil EC estimation model established with the MSI data set attained a higher performance and accuracy (R2 = 0.88, root mean square error (RMSE) = 4.89 dS m−1, and ratio of the performance to the interquartile range (RPIQ) = 1.96, standard error of the laboratory measurements to the standard error of the predictions (SEL/SEP) = 1.11) than those attained with the soil EC estimation models established with the RF and ANN models. (4) We applied the SVM soil EC estimation model to map the soil salinity in the study area, which showed that the farmland with higher altitudes discharged a large amount of salt to the surroundings due to long-term irrigation, and the secondary salinization of the farmland also caused a large amount of salt accumulation. This research provides a scientific basis for the simulation of soil salinization scenarios in arid areas in the future.


Drones ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 21 ◽  
Author(s):  
Francisco Rodríguez-Puerta ◽  
Rafael Alonso Ponce ◽  
Fernando Pérez-Rodríguez ◽  
Beatriz Águeda ◽  
Saray Martín-García ◽  
...  

Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has its own regulations in this respect, but they all have in common that by reducing fuel load, we in turn reduce the intensity and severity of the fire. The use of Unmanned Aerial Vehicles (UAV)-acquired data combined with other passive and active remote sensing data has the greatest performance to planning Wildland-Urban Interface (WUI) fuelbreak through machine learning algorithms. Nine remote sensing data sources (active and passive) and four supervised classification algorithms (Random Forest, Linear and Radial Support Vector Machine and Artificial Neural Networks) were tested to classify five fuel-area types. We used very high-density Light Detection and Ranging (LiDAR) data acquired by UAV (154 returns·m−2 and ortho-mosaic of 5-cm pixel), multispectral data from the satellites Pleiades-1B and Sentinel-2, and low-density LiDAR data acquired by Airborne Laser Scanning (ALS) (0.5 returns·m−2, ortho-mosaic of 25 cm pixels). Through the Variable Selection Using Random Forest (VSURF) procedure, a pre-selection of final variables was carried out to train the model. The four algorithms were compared, and it was concluded that the differences among them in overall accuracy (OA) on training datasets were negligible. Although the highest accuracy in the training step was obtained in SVML (OA=94.46%) and in testing in ANN (OA=91.91%), Random Forest was considered to be the most reliable algorithm, since it produced more consistent predictions due to the smaller differences between training and testing performance. Using a combination of Sentinel-2 and the two LiDAR data (UAV and ALS), Random Forest obtained an OA of 90.66% in training and of 91.80% in testing datasets. The differences in accuracy between the data sources used are much greater than between algorithms. LiDAR growth metrics calculated using point clouds in different dates and multispectral information from different seasons of the year are the most important variables in the classification. Our results support the essential role of UAVs in fuelbreak planning and management and thus, in the prevention of forest fires.


2020 ◽  
Vol 12 (24) ◽  
pp. 4086
Author(s):  
Danielle Elis Garcia Furuya ◽  
João Alex Floriano Aguiar ◽  
Nayara V. Estrabis ◽  
Mayara Maezano Faita Pinheiro ◽  
Michelle Taís Garcia Furuya ◽  
...  

Riparian zones consist of important environmental regions, specifically to maintain the quality of water resources. Accurately mapping forest vegetation in riparian zones is an important issue, since it may provide information about numerous surface processes that occur in these areas. Recently, machine learning algorithms have gained attention as an innovative approach to extract information from remote sensing imagery, including to support the mapping task of vegetation areas. Nonetheless, studies related to machine learning application for forest vegetation mapping in the riparian zones exclusively is still limited. Therefore, this paper presents a framework for forest vegetation mapping in riparian zones based on machine learning models using orbital multispectral images. A total of 14 Sentinel-2 images registered throughout the year, covering a large riparian zone of a portion of a wide river in the Pontal do Paranapanema region, São Paulo state, Brazil, was adopted as the dataset. This area is mainly composed of the Atlantic Biome vegetation, and it is near to the last primary fragment of its biome, being an important region from the environmental planning point of view. We compared the performance of multiple machine learning algorithms like decision tree (DT), random forest (RF), support vector machine (SVM), and normal Bayes (NB). We evaluated different dates and locations with all models. Our results demonstrated that the DT learner has, overall, the highest accuracy in this task. The DT algorithm also showed high accuracy when applied on different dates and in the riparian zone of another river. We conclude that the proposed approach is appropriated to accurately map forest vegetation in riparian zones, including temporal context.


2019 ◽  
Vol 11 (5) ◽  
pp. 481 ◽  
Author(s):  
Deepak Upreti ◽  
Wenjiang Huang ◽  
Weiping Kong ◽  
Simone Pascucci ◽  
Stefano Pignatti ◽  
...  

This study focuses on the comparison of hybrid methods of estimation of biophysical variables such as leaf area index (LAI), leaf chlorophyll content (LCC), fraction of absorbed photosynthetically active radiation (FAPAR), fraction of vegetation cover (FVC), and canopy chlorophyll content (CCC) from Sentinel-2 satellite data. Different machine learning algorithms were trained with simulated spectra generated by the physically-based radiative transfer model PROSAIL and subsequently applied to Sentinel-2 reflectance spectra. The algorithms were assessed against a standard operational approach, i.e., the European Space Agency (ESA) Sentinel Application Platform (SNAP) toolbox, based on neural networks. Since kernel-based algorithms have a heavy computational cost when trained with large datasets, an active learning (AL) strategy was explored to try to alleviate this issue. Validation was carried out using ground data from two study sites: one in Shunyi (China) and the other in Maccarese (Italy). In general, the performance of the algorithms was consistent for the two study sites, though a different level of accuracy was found between the two sites, possibly due to slightly different ground sampling protocols and the range and variability of the values of the biophysical variables in the two ground datasets. For LAI estimation, the best ground validation results were obtained for both sites using least squares linear regression (LSLR) and partial least squares regression, with the best performances values of R2 of 0.78, rott mean squared error (RMSE) of 0.68 m2 m−2 and a relative RMSE (RRMSE) of 19.48% obtained in the Maccarese site with LSLR. The best results for LCC were obtained using Random Forest Tree Bagger (RFTB) and Bagging Trees (BagT) with the best performances obtained in Maccarese using RFTB (R2 = 0.26, RMSE = 8.88 μg cm−2, RRMSE = 17.43%). Gaussian Process Regression (GPR) was the best algorithm for all variables only in the cross-validation phase, but not in the ground validation, where it ranked as the best only for FVC in Maccarese (R2 = 0.90, RMSE = 0.08, RRMSE = 9.86%). It was found that the AL strategy was more efficient than the random selection of samples for training the GPR algorithm.


Sign in / Sign up

Export Citation Format

Share Document