The comparison of engine performance and exhaust emission characteristics of sesame oil–diesel fuel mixture with diesel fuel in a direct injection diesel engine

2008 ◽  
Vol 33 (8) ◽  
pp. 1791-1795 ◽  
Author(s):  
Şehmus Altun ◽  
Hüsamettin Bulut ◽  
Cengiz Öner
Author(s):  
Prabhu Appavu ◽  
Venkata Ramanan Madhavan ◽  
Harish Venu ◽  
Jayaprabakar Jayaraman

The present study investigated the performance and emission characteristics of a single cylinder direct injection diesel engine fuelled with diesel – jatropha biodiesel – pentanol blends. The test fuels used for the experiment include diesel fuel (Diesel), 80% diesel (v/v) – 20% jatropha biodiesel (v/v) (D80J20), 70% diesel (v/v) – 20% jatropha biodiesel (v/v) – 10% pentanol (v/v) (D70J20P10), and 60% diesel (v/v) – 20% jatropha biodiesel (v/v) – 20% pentanol (v/v) (D60J20P20). Studied performance characteristics include brake specific fuel consumption and torque, while emission characteristics include carbon monoxide, nitrogen oxides, and smoke opacity. Experimental results revealed that the addition of pentanol influenced a reduction in brake power and torque with a noticeable improvement in engine exhaust emissions. To conclude, the addition of pentanol (20%, v/v) to diesel–jatropha blends resulted in lowered CO, NOx, and smoke opacity by 41.76%, 27.6%, and 32.4%, respectively, because of improved oxygen content of the resulting ternary mixture and improved combustion efficiency.


2012 ◽  
Vol 06 ◽  
pp. 425-430
Author(s):  
HYUNG-GON KIM ◽  
SEUNG-HUN CHOI ◽  
YOUNG-TAIG OH

Effect of oxygen components of fuels on exhaust emissions has been investigated by applying an indirect injection (IDI) diesel engine. This research analyzed variation and/or difference of the engine performance and exhaust emission characteristics of the IDI diesel engine by fueling the commercial diesel fuel and four different mixed ratios of oxygenated blended fuels. Effect of the exhaust gas recirculation (EGR) method was analyzed on the NOx emission characteristics. Ethylene glycol mono-n-butyl ether (EGBE) contains 27% of oxygen components in itself, and it is a kind of effective oxygenated fuel of mono-ether group. Smoke emission from the EGBE was reduced remarkably relative to the commercial diesel fuel. The EGBE can supply oxygen components sufficiently at higher diesel engine loads and speeds. It was found that a simultaneous reduction of the smoke and the NOx was achieved with the oxygenated fuel (10 vol-%) and the cooled EGR method (10%).


Mechanika ◽  
2019 ◽  
Vol 25 (5) ◽  
pp. 363-369 ◽  
Author(s):  
ADNAN BERBER

In this work, the methanol is added to the diesel fuel in the volumetric proportions of 5%-%10-%15 to diminish negative environmental impacts of diesel engines. The diesel-methanol blends in the various proportions are tested in a single-cylinder direct-injection diesel engine. According to the test results, the addition of methanol to the diesel fuel causes a maximum decrease of 13.07 % in the engine torque, and a maximum decrease of 12.54 % in the specific fuel consumption. On the other hand, the exhaust emission results show that the values of CO and CO2 decrease 38.4 % and 5.04%. However, the increase of 3.66% in the exhaust gas temperature causes the increase of 17.1% in the NOx emission. Also, a significant decrease of 39.37% in the smoke opacity is observed compared to that of the diesel fuel. Although the addition of methanol to diesel fuel causes a slightly decrease in the engine performance, the diesel-methanol blends have a reasonable and considerable positive effect on environmental concerns of diesel engines.


Author(s):  
K. Anand ◽  
Pramod S. Mehta ◽  
R. P. Sharma

Due to its renewable nature, emission advantage and easy adaptation, biodiesel is emerging as an alternative to fossil diesel. There are however concerns on biodiesel storage stability aspect due to the presence of unsaturated content in its composition. This paper discusses on studying the effect of long term storage stability of Karanja derived biodiesel (KME) on the performance, combustion and emission characteristics of a turbo-charged, multicylinder, direct injection diesel engine. For aged karanja derived biodiesel (A-KME) stored in a mild steel container for 500 days, both the fuel properties and the engine performance are found to change. It is observed that the aged fuel as compared to the fresh karanja derived biodiesel (F-KME) showed i) an increase in the acid value and kinematic viscosity from 0.374 mg KOH/g to 0.89 mg KOH/g and 5.6 to 5.7 cSt respectively, ii) a slight decrease in ignition delay and maximum rate of pressure rise, iii) a maximum increase in peak cylinder pressure of about 10% and duration of combustion of 8 deg. CA, iv) a decrease in brake thermal efficiency to an extent of over 4%, v) an increase in un burnt hydrocarbon emissions particularly at low loads, and, vi) a significant increase in exhaust nitric oxide (∼30%) and the smoke emissions (∼78%) at higher loads.


Sign in / Sign up

Export Citation Format

Share Document