Energy-consumption and economic analysis of group and building substation systems — A case study of the reformation of the district heating system in China

2016 ◽  
Vol 87 ◽  
pp. 1139-1147 ◽  
Author(s):  
Peng Wang ◽  
Kari Sipilä
2021 ◽  
Vol 25 (1) ◽  
pp. 551-562
Author(s):  
Stanislav Chicherin ◽  
Andrey Zhuikov ◽  
Mikhail Kolosov ◽  
Lyazzat Junussova ◽  
Madina Aliyarova ◽  
...  

Abstract Temperature difference between supply and return distribution medium (water) is a vital factor when assessing the efficiency of a district heating (DH) substation. An accounting for fluctuations and differences of the heat consumption/generation is the key problem in planning DH system operation. The influence of the fluctuating energy consumption on a DH system was studied with actual data, using the DH systems of the Russian cities Krasnoyarsk and Omsk as a case study. Information is visualized in the form of graphs and charts, orderly and clearly comparing certain points. The data includes supply and return temperatures, and heat demand. Clearly visible state of high return temperatures induces more bottleneck problems as the flow increases. At the same time, in 2019, the total heat demand was 21 008 MW. This is more than 5 % than in 2020, assuming 100 % of consumers connected. The reasons for this trend are: decreasing total housing area, no incentive for the buildings in newly built-up areas to be connected to the DH system, poor service motivating business facilities to disconnect from the system. When the primary energy consumption related to the warmer climate and behaviour of business sector decreases, the DH system requires renovation. It is possible to reduce network return temperature during some months of the year. The reason is that, a high temperature difference is essential to maintain high efficiency and minimize fuel and pumping cost, it also enables more customers to be connected to a DH system without increasing pipe dimensions of a network.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3782 ◽  
Author(s):  
Antti Teräsvirta ◽  
Sanna Syri ◽  
Pauli Hiltunen

Small Modular Reactors (SMRs) have been recognized to have potential in decarbonizing district heating, which is currently an urgent sustainability challenge in many European countries. In this paper, the financial impacts of replacing peat and biomass-powered Combined Heat and Power (CHP) plants with heat-only reactors of 24–200 MW power range and maximum output temperatures of 120 °C are studied. A district heating system of a medium-sized Nordic city in Eastern Finland is modeled with EnergyPRO computer software (EMD International A/S, Aalborg, Denmark), which is used to optimize plant units’ production for cost effectiveness. A future scenario is used to predict electricity prices, expenditures from CO2 emission allowances, and fuel prices for the studied case. Results show that the low operating expenditures of CO2 free heat-only reactors would compensate for the revenue losses from electricity sales and that a small number of micro reactors, with power output in the tens of megawatts range each, would be optimal for the studied case. Since investment cost estimates for SMRs still bear significant uncertainties, the subject should be followed in further studies, as heat-only SMRs could provide a profitable alternative for current CHP production in the future.


Author(s):  
Anna Volkova ◽  
Vladislav Mashatin ◽  
Aleksander Hlebnikov ◽  
Andres Siirde

Abstract The purpose of this paper is to offer a methodology for the evaluation of large district heating networks. The methodology includes an analysis of heat generation and distribution based on the models created in the TERMIS and EnergyPro software Data from the large-scale Tallinn district heating system was used for the approbation of the proposed methodology as a basis of the case study. The effective operation of the district heating system, both at the stage of heat generation and heat distribution, can reduce the cost of heat supplied to the consumers. It can become an important factor for increasing the number of district heating consumers and demand for the heat load, which in turn will allow installing new cogeneration plants, using renewable energy sources and heat pump technologies


Vestnik MGSU ◽  
2019 ◽  
pp. 748-755 ◽  
Author(s):  
Saule K. Abildinova ◽  
Stanislav V. Chicherin

Introduction. The purpose of this investigation is to show what changes introduced in the mathematical model of a district heating system are capable of considerable improving the convergence of simulation results and actual data. The study evaluates the work of heating supply establishments with their customers as well as analysis of the ways of enhancing pump equipment efficiency that allows saving electric energy or increasing output at the same energy consumption. Materials and methods. Engineering acceptance of newly introduced and reconstructed facilities is conducted, heat loads are corrected, disconnections and recurrent connections of indebted consumers are carried out. Studying data submitted by a local heat supply establishment shows that pump seals made from iron and steel are subject accelerated wear in the course of operation. Results. Three variants of the problem solution are suggested: making seals from bronze or stainless steel, prevention of unjustified increase of seal clearances as well as using labyrinth pump seals. This will allow increasing pump equipment efficiency by 5 to 7 % and save about 2 × 105 kW∙h of electrical energy for every pump or increase of output at the same energy consumption. Taking into account that a pump station is a part of the district heating system and unmachined inner surfaces of the pumps have a significant roughness, grinding of these surfaces can improve their hydraulic characteristics of the pumps. In the scope of the suggested method, the entire district heating system is considered not in the situation when actual load is equal to the sum of all the design loads and the pump equipment has manufacturer’s parameters, but accounting actual loads and characteristics. Conclusions. Mathematical model of district heating system heating and hydraulic mode that takes issues mentioned above into consideration would allow simulating joint operation of the heating and hot water supply systems at transient operation modes with higher accuracy.


Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 15 ◽  
Author(s):  
Marco Ravina ◽  
Deborah Panepinto ◽  
Mariachiara Zanetti

The minimization of negative externalities is a key aspect in the development of a circular and sustainable economic model. At the local scale, especially in urban areas, externalities are generated by the adverse impacts of air pollution on human health. Local air quality policies and plans often lack of considerations and instruments for the quantification and evaluation of external health costs. Support for decision-makers is needed, in particular during the implementation stage of air quality plans. Modelling tools based on the impact pathway approach can provide such support. In this paper, the implementation of health impacts and externalities analysis in air quality planning is evaluated. The state of the art in European member states is reported, considering whether and how health effects have been included in the planning schemes. The air quality plan of the Piemonte region in Italy is then considered. A case study is analyzed to evaluate a plan action, i.e., the development of the district heating system in the city of Turin. The DIATI (Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture) Dispersion and Externalities Model (DIDEM model) is applied to detect the scenario with the highest external cost reduction. This methodology results are extensible and adaptable to other actions and measures, as well as other local policies in Europe. The use of health externalities should be encouraged and integrated into the present methodology supporting air quality planning. Efforts should be addressed to quantify and minimize the overall uncertainty of the process.


Sign in / Sign up

Export Citation Format

Share Document