Biodiesel production from waste cooking oil using onsite produced purified lipase from Pseudomonas aeruginosa FW_SH-1: Central composite design approach

2017 ◽  
Vol 109 ◽  
pp. 93-100 ◽  
Author(s):  
Chaudhry Haider Ali ◽  
Abdul Sattar Qureshi ◽  
Serge Maurice Mbadinga ◽  
Jin-Feng Liu ◽  
Shi-Zhong Yang ◽  
...  
Teknomekanik ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 14-21
Author(s):  
Sri Rizki Putri Primandari ◽  
Andril Arafat ◽  
Harumi Veny

Waste cooking oil has high Free Fatty Acid (FFA). It affected on decreasing a biodiesel production. FFA reduction is one of important processes in biodiesel production from waste cooking oil. Thus, this study aimed to examine the optimum condition in FFA reduction. The process is assisted by using ultrasonic irradiation on acid esterification. Variables of the process are acid concentration, molar ratio of methanol and oil, and irradiation time. Meanwhile temperature irradiation on 45oC is a control variable. Process optimization is conducted by Response Surface Methodology (RSM) with Central Composite Design (CCD). The optimum conditions of response were 7.22:1 (methanol to oil molar ratio), 0.92% wt H2SO4, 26.04 minutes (irradiation time), and 45oC (irradiation temperature). Ultrasonic system reduced FFA significantly compared to conventional method.


Author(s):  
Parvesh Kumar ◽  
◽  
M. Ramprasad ◽  
Sidharth ◽  
◽  
...  

The continuous fluctuation in the price of crude oil in the international market during the Covid-19 situation forced all the nation to work for self-sustainability in the energy sector. This pandemic condition also teaches all to utilize available sources effectively. So to deal with dual problems the optimized conversion of waste into an energy source is the most effective solution. In the present work waste cooking oil is converted into biodiesel and the production process is optimized using the response surface methodology technique. The central composite design approach of RSM is selected for optimization in the present work which provides a better result in limited experiments. The yield of waste cooking oil biodiesel is optimized through four parameters i.e. catalyst concentration, temp., time, and alcohol to oil molar ratio. The effect of all these parameters is analyzed exhaustively with the help of design expert software. The physicochemical properties of optimized WCOB are measured and the results are compared with petrodiesel fuel and normally prepared WCOB. It is found that the yield of WCOB is increased by more than 4% while prepared with optimized parameter values. The physicochemical properties of optimized WCOB were also found better as compared to normally prepared WCOB and comparable to petrodiesel. Hence it can be concluded that the optimization of biodiesel production not only improves the yield but also improves the quality of the biodiesel.


Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


ACS Omega ◽  
2021 ◽  
Vol 6 (13) ◽  
pp. 9204-9212
Author(s):  
Neelam Khan ◽  
Sang H. Park ◽  
Lorraine Kadima ◽  
Carlove Bourdeau ◽  
Evelyn Calina ◽  
...  

Author(s):  
Shahabaldin Rezania ◽  
Zahra Sotoudehnia Korrani ◽  
Mohammad Ali Gabris ◽  
Jinwoo Cho ◽  
Krsihna Kumar Yadav ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document