Microwave pyrolysis of biomass for low-oxygen bio-oil: Mechanisms of CO2-assisted in-situ deoxygenation

Author(s):  
Donghua Xu ◽  
Junhao Lin ◽  
Rui Ma ◽  
Lin Fang ◽  
Shichang Sun ◽  
...  
2021 ◽  
Vol 341 ◽  
pp. 125874
Author(s):  
Nichaboon Chaihad ◽  
Aisikaer Anniwaer ◽  
Aghietyas Choirun Az Zahra ◽  
Yutaka Kasai ◽  
Prasert Reubroycharoen ◽  
...  

Author(s):  
Xiaoya Guo ◽  
Shouguang Li ◽  
Yong Zheng ◽  
Bingbing Ci

Author(s):  
Nuttapan Promsampao ◽  
Nuwong Chollacoop ◽  
Adisak Pattiya

Ex-situ catalytic fast pyrolysis (ex-CFP) of biomass applying ZSM-5 catalysts is an effective method for deoxygenating the pyrolysis vapour, thus producing low-oxygen bio-oil in a single step. The catalysts deactivate...


2021 ◽  
Vol 65 (2-4) ◽  
pp. 250-255
Author(s):  
Ferruccio Trifirò

Energy can be produced from biomass by biochemical, biological and thermal process. Pyrolysis is a thermal process that operate at temperature between 400-600C in absence of oxygen or with very low amount, to produce a bio-oil, char and gas. The best technology is fast pyrolysis that produce higher amount of liquid bio-oil, particularly 75% of liquid, -at 500oC without oxygen, contact time lesser 2sec a drying of biomass till 10%, with dimension of particles of biomass of 3mm, using mainly bubbling fluid bed, However the bio-oil obtained with fast pyrolysis present a lot drawbacks: it presents a high amount of oxygen, high acidity, high viscosity, high moisture and chemical instability. Fast pyrolysis can be upgraded operating in the presence of a catalyst (in-situ) or with a downstream catalytic reactor to the that one of fast pyrolysis (ex situ). Besides it is possible upgrade the bio-oil transforming it in fuels and chemical products realizing the catalytic pyrolysis in presence of H2 (hydropyrolysis) or realizing hydrodeoxygenation reactions downstream the fast pyrolysis or using as reductants wastes from plastics, from rubber of tires or from organic wastes in order to realize a catalytic co-pyrolysis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zhiyue Zhao ◽  
Zhiwei Jiang ◽  
Hong Xu ◽  
Kai Yan

We report a sustainable strategy to cleanly address biomass waste with high-value utilization. Phenol-rich bio-oil is selectively produced by direct pyrolysis of biomass waste corn straw (CS) without use of any catalyst in a microwave device. The effects of temperature and power on the yield and composition of pyrolysis products are investigated in detail. Under microwave irradiation, a very fast pyrolysis rate and bio-oil yield as high as 46.7 wt.% were obtained, which were competitive with most of the previous results. GC-MS analysis showed that temperature and power (heating rate) had great influences on the yield of bio-oil and the selectivity of phenolic compounds. The optimal selectivity of phenols in bio-oil was 49.4 area% by adjusting the operating parameters. Besides, we have made detailed statistics on the change trend of some components and different phenols in bio-oil and given the law and reason of their change with temperature and power. The in situ formed highly active biochar from CS with high content of potassium (1.34 wt.%) is responsible for the improvement of phenol-rich oils. This study offers a sustainable way to fully utilize biomass waste and promote the achievement of carbon neutrality.


2017 ◽  
Vol 316 ◽  
pp. 481-498 ◽  
Author(s):  
D. Beneroso ◽  
T. Monti ◽  
E.T. Kostas ◽  
J. Robinson

Author(s):  
Isabelle Polaert ◽  
Lilivet Ubiera ◽  
Lokmane Abdelouahed ◽  
Bechara Taouk

The pursuit of sustainable relationship between the production and consumption of energy has accelerated the research into new fuels alternatives, and mainly focused on new technologies for biomass based fuels. Microwave pyrolysis of biomass is a relatively new process which has been long recognized to provide better quality bio-products in shorter reaction time due to the direct sample heating and the particular heating profile resulting from the interaction of biomass with the electric field component of an electromagnetic wave [1,2]. During the course of this research, flax shives were pyrolysed using a rotatory kiln reactor inside a microwave single mode cavity using a range of power between 100 and 200 watts, to reach a temperature range between 450 °C and 650°C. The liquid bio-oil samples recovered in each case were analyzed though gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID) to identify and quantify the different molecules presents and paying a particular attention to the BTX’s concentration. More than two hundred compounds were identified and grouped into families such as carboxylic acids, alcools, sugars for a deep analysis of the results. The effect of the operating conditions on the proportion of gas, liquid and char produced were studied as well as some properties of the pyrolysis products. In most cases, carboxylic acids were the dominating chemical group present. It was also noticed that the increase of temperature enhanced the carboxylic acids production and diminished the production of other groups, as sugars. Finally, pyrolysis oils were produced in higher quantities by microwaves than in a classical oven and showed a different composition. The examination of the pyrolytic liquid products from different biomass components helped to determine the provenance of each molecule family. On the operational side, the rotatory kiln reactor provided a fast and homogeneous heating profile inside the reactor, desired for fast pyrolysis. The high temperature was maintained without making hot spots during the reaction time. The microwave irradiation setup consisted in a single-mode cavity, a system of plungers, incident and reflected power monitors, an isolator and a 2.45 GHz continuous microwave generator with a power upper limit of 2000 watts. The plunger system was calibrated to maintain a range of reflective wave between 5 and 15%, taking advantage of a minimum of 85 percent of the applied power. In conclusion, the developed microwave pyrolysis process gives a clear way to produce an exploitable bio-oil with enhanced properties.   References Beneroso, D., Monti, T., Kostas, E., Robinson, J., CEJ, 2017.,316, 481- 498. Autunes E., Jacob M., Brodie, G., Schneider, A., JAAP, 2018,129, 93-100.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


2021 ◽  
Vol 657 (1) ◽  
pp. 012023
Author(s):  
Zengtong Deng ◽  
Yi Wang ◽  
Song Hu ◽  
Sheng Su ◽  
Long Jiang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document