scholarly journals Linkage of impact pathways to cultural perspectives to account for multiple aspects of mineral resource use in life cycle assessment

2022 ◽  
Vol 176 ◽  
pp. 105912
Author(s):  
Alexandre Charpentier Poncelet ◽  
Antoine Beylot ◽  
Philippe Loubet ◽  
Bertrand Laratte ◽  
Stéphanie Muller ◽  
...  
2021 ◽  
Vol 13 (21) ◽  
pp. 11682
Author(s):  
Martin Nwodo ◽  
Chimay Anumba

The relevance of exergy to the life cycle assessment (LCA) of buildings has been studied regarding its potential to solve certain challenges in LCA, such as the characterization and valuation, accuracy of resource use, and interpretation and comparison of results. However, this potential has not been properly investigated using case studies. This study develops an exergy-based LCA method and applies it to three case-study buildings to explore its benefits. The results provide evidence that the theoretical benefits of exergy-based LCA as against a conventional LCA can be achieved. These include characterization and valuation benefits, accuracy, and enabling the comparison of environmental impacts. With the results of the exergy-based LCA method in standard metrics, there is now a mechanism for the competitive benchmarking of building sustainability assessments. It is concluded that the exergy-based life cycle assessment method has the potential to solve the characterization and valuation problems in the conventional life-cycle assessment of buildings, with local and global significance.


Resources ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 32 ◽  
Author(s):  
Iulia Dolganova ◽  
Anne Rödl ◽  
Vanessa Bach ◽  
Martin Kaltschmitt ◽  
Matthias Finkbeiner

Changes in the mobility patterns have evoked concerns about the future availability of certain raw materials necessary to produce alternative drivetrains and related batteries. The goal of this article is to determine if resource use aspects are adequately reflected within life cycle assessment (LCA) case studies of electric vehicles (EV). Overall, 103 LCA studies on electric vehicles from 2009 to 2018 are evaluated regarding their objective, scope, considered impact categories, and assessment methods—with a focus on resource depletion and criticality. The performed analysis shows that only 24 out of 76 EV LCA and 10 out of 27 battery LCA address the issue of resources. The majority of the studies apply one of these methods: CML-IA, ReCiPe, or Eco-Indicator 99. In most studies, EV show higher results for mineral and metal resource depletion than internal combustion engine vehicles (ICEV). The batteries analysis shows that lithium, manganese, copper, and nickel are responsible for the highest burdens. Only few publications approach resource criticality. Although this topic is a serious concern for future mobility, it is currently not comprehensively and consistently considered within LCA studies of electric vehicles. Criticality should be included in the analyses in order to derive results on the potential risks associated with certain resources.


2020 ◽  
Vol 25 (4) ◽  
pp. 798-813 ◽  
Author(s):  
Markus Berger ◽  
Thomas Sonderegger ◽  
Rodrigo Alvarenga ◽  
Vanessa Bach ◽  
Alexander Cimprich ◽  
...  

Abstract Purpose Assessing impacts of abiotic resource use has been a topic of persistent debate among life cycle impact assessment (LCIA) method developers and a source of confusion for life cycle assessment (LCA) practitioners considering the different interpretations of the safeguard subject for mineral resources and the resulting variety of LCIA methods to choose from. Based on the review and assessment of 27 existing LCIA methods, accomplished in the first part of this paper series (Sonderegger et al. 2020), this paper provides recommendations regarding the application-dependent use of existing methods and areas for future method development. Method Within the “global guidance for LCIA indicators and methods” project of the Life Cycle Initiative hosted by UN Environment, 62 members of the “task force mineral resources” representing different stakeholders discussed the strengths and limitations of existing LCIA methods and developed initial conclusions. These were used by a subgroup of eight members at the Pellston Workshop® held in Valencia, Spain, to derive recommendations on the application-dependent use and future development of impact assessment methods. Results and discussion First, the safeguard subject for mineral resources within the area of protection (AoP) natural resources was defined. Subsequently, seven key questions regarding the consequences of mineral resource use were formulated, grouped into “inside-out” related questions (i.e., current resource use leading to changes in opportunities for future users to use resources) and “outside-in” related questions (i.e., potential restrictions of resource availability for current resource users). Existing LCIA methods were assigned to these questions, and seven methods (ADPultimate reserves, SOPURR, LIME2endpoint, CEENE, ADPeconomic reserves, ESSENZ, and GeoPolRisk) are recommended for use in current LCA studies at different levels of recommendation. All 27 identified LCIA methods were tested on an LCA case study of an electric vehicle, and yielded divergent results due to their modeling of impact mechanisms that address different questions related to mineral resource use. Besides method-specific recommendations, we recommend that all methods increase the number of minerals covered, regularly update their characterization factors, and consider the inclusion of secondary resources and anthropogenic stocks. Furthermore, the concept of dissipative resource use should be defined and integrated in future method developments. Conclusion In an international consensus-finding process, the current challenges of assessing impacts of resource use in LCA have been addressed by defining the safeguard subject for mineral resources, formulating key questions related to this safeguard subject, recommending existing LCIA methods in relation to these questions, and highlighting areas for future method development.


2014 ◽  
Vol 19 (5) ◽  
pp. 1156-1168 ◽  
Author(s):  
Andreas Emanuelsson ◽  
Friederike Ziegler ◽  
Leif Pihl ◽  
Mattias Sköld ◽  
Ulf Sonesson

Sign in / Sign up

Export Citation Format

Share Document