A framework for good practices to assess abiotic mineral resource depletion in Life Cycle Assessment

2021 ◽  
Vol 279 ◽  
pp. 123296
Author(s):  
Marilys Pradel ◽  
Julien Garcia ◽  
Mikko Samuli Vaija
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3820
Author(s):  
Mélanie Douziech ◽  
Lorenzo Tosti ◽  
Nicola Ferrara ◽  
Maria Laura Parisi ◽  
Paula Pérez-López ◽  
...  

Heat production from a geothermal energy source is gaining increasing attention due to its potential contribution to the decarbonization of the European energy sector. Obtaining representative results of the environmental performances of geothermal systems and comparing them with other renewables is of utmost importance in order to ensure an effective energy transition as targeted by Europe. This work presents the outputs of a Life Cycle Assessment (LCA) performed on the Rittershoffen geothermal heat plant applying guidelines that were developed within the H2020 GEOENVI project. The production of 1 kWhth from the Rittershoffen heat plant was compared to the heat produced from natural gas in Europe. Geothermal heat production performed better than the average heat production in climate change and resource use, fossil categories. The LCA identified the electricity consumption during the operation and maintenance phase as a hot spot for several impact categories. A prospective scenario analysis was therefore performed to assess the evolution of the environmental performances of the Rittershoffen heat plant associated with the future French electricity mixes. The increase of renewable energy shares in the future French electricity mix caused the impact on specific categories (e.g., land use and mineral and metals resource depletion) to grow over the years. However, an overall reduction of the environmental impacts of the Rittershoffen heat plant was observed.


2019 ◽  
Vol 8 (4) ◽  
pp. 304 ◽  
Author(s):  
Björn Koch ◽  
Fernando Peñaherrera ◽  
Alexandra Pehlken

Including criticality into Life Cycle Assessment (LCA) has always been challenging to achieve but desirable to accomplish. In this article, we present a new approach for the evaluation of resource consumption of products by building comparison values based on Life Cycle Impact Assessment (LCIA) combined with weighted criticality values to show the direct impacts of criticality on LCA results. For this purpose, we develop an impact indicator based on the Abiotic Depletion Potential (ADP) of natural resources and use the two main parameters defined by the EU to determine the criticality of a material - the economic importance and the supply risk – in our case studies to build the Criticality Weighted Abiotic Depletion Potentials (CWADPs), one for each parameter. These indicators allow identifying and measuring the impacts of criticality when comparing the results of resource depletion using the ADP methodology and the results that incorporate criticality. The comparison of the CWADPs to the corresponding EU criticality values and its thresholds it reflects the equivalent criticality of the assessed product. This information reflects the impacts of criticality on LCA and assesses the total resource consumption of critical materials in a system.Keywords: Life Cycle Assessment, criticality, resources, materials, sustainability indicator


OENO One ◽  
2016 ◽  
Vol 50 (2) ◽  
Author(s):  
Anthony Rouault ◽  
Sandra Beauchet ◽  
Christel Renaud-Gentie ◽  
Frédérique Jourjon

<p style="text-align: justify;"><strong>Aims</strong>: Using Life Cycle Assessment (LCA), this study aims to compare the environmental impacts of two different viticultural technical management routes (TMRs); integrated and organic) and to identify the operations that contribute the most to the impacts.</p><p style="text-align: justify;"><strong>Methods and results</strong>: LCA impact scores were expressed in two functional units: 1 ha of cultivated area and 1 kg of collected grape. We studied all operations from field preparation before planting to the end-of-life of the vine. Inputs and outputs were transformed into potential environmental impacts thanks to SALCA™ (V1.02) and USETox™ (V1.03) methods. Plant protection treatments were a major cause of impact for both TMRs for fuel-related impact categories. For both TMRs, the main contributors to natural resource depletion and freshwater ecotoxicity were trellis system installation and background heavy metal emissions, respectively.</p><p style="text-align: justify;"><strong>Conclusion</strong>: This study shows that the studied organic TMR has higher impact scores than the integrated TMR for all the chosen impact categories except eutrophication. However, the chosen TMRs are only typical of integrated and organic viticulture in Loire Valley and some emission models (heavy metal, fuel-related emissions, and nitrogen emissions) have to be improved in order to better assess the environmental impacts of viticulture. Soil quality should also be integrated to LCA results in viticulture because this lack may be a disadvantage for organic viticulture.</p><strong>Significance and impact of study</strong>: This study is among the first to compare LCA results of an integrated and an organic TMR.


Author(s):  
Manish Sakhlecha ◽  
Samir Bajpai ◽  
Rajesh Kumar Singh

Buildings consume major amount of energy as well as natural resources leading to negative environmental impacts like resource depletion and pollution. The current task for the construction sector is to develop an evaluation tool for rating of buildings based on their environmental impacts. There are various assessment tools and models developed by different agencies in different countries to evaluate building's effect on environment. Although these tools have been successfully used and implemented in the respective regions of their origin, the problems of application occur, especially during regional adaptation in other countries due to peculiarities associated with the specific geographic location, climatic conditions, construction methods and materials. India is a rapidly growing economy with exponential increase in housing sector. Impact assessment model for a residential building has been developed based on life cycle assessment (LCA) framework. The life cycle impact assessment score was obtained for a sample house considering fifteen combinations of materials paired with 100% thermal electricity and 70%-30% thermal-solar combination, applying normalization and weighting to the LCA results. The LCA score of portland slag cement with burnt clay red brick and 70%-30% thermal-solar combination (PSC+TS+RB) was found to have the best score and ordinary Portland cement with flyash brick and 100% thermal power (OPC+T+FAB) had the worst score, showing the scope for further improvement in LCA model to include positive scores for substitution of natural resources with industrial waste otherwise polluting the environment.


2020 ◽  
Vol 993 ◽  
pp. 1473-1480
Author(s):  
Yan Jiao Zhang ◽  
Li Ping Ma ◽  
Shi Wei Ren ◽  
Meng Chi Huang ◽  
Ying Wang ◽  
...  

With the emphasis of national policies on green manufacturing and the recognition of the people for green development, expanding the green assessment of products will be the general trend. In this study the life cycle assessment method was used to compile a list of resources, energy consumption and pollutant emissions during the life cycle of typical ordinary gypsum plasterboard and functional phase-change gypsum plasterboard, the key environmental impact indicators of both products during the life cycle calculated, the key stages affecting the environmental performance of products analyzed and identified, and the difference in environmental impacts between phase-change gypsum plasterboard and ordinary gypsum plasterboard compared and analyzed, for guiding the selection of green building materials and the development of ecological building materials. The results show that the global warming potential of phase-change gypsum plasterboard is 3.42 kgCO2 equivalent/m2, the non-renewable resource depletion potential is 2.25×10-5 kgSb equivalent/m2, the respiratory inorganic is 1.97×10-3 kgPM2.5 equivalent/m2, the eutrophication is 1.21×10-3 kgPO43- equivalent/m2, and the acidification is 9.47×10-3 kgSO2 equivalent/m2. Compared with ordinary gypsum plasterboard, the phase-change gypsum plasterboard shows the biggest increase by 874.03% in non-renewable resource depletion potential. The major environmental impact of ordinary gypsum plasterboard in the life cycle is mainly from energy use, and the transport process is the main stage of eutrophication. The use of phase-change materials in the phase-change gypsum plasterboard is the main stage causing environmental impact.


2014 ◽  
Vol 73 ◽  
pp. 63-71 ◽  
Author(s):  
Juliette Langlois ◽  
Pierre Fréon ◽  
Jean-Philippe Delgenes ◽  
Jean-Philippe Steyer ◽  
Arnaud Hélias

2019 ◽  
Vol 11 (19) ◽  
pp. 5324 ◽  
Author(s):  
Daniel Maga ◽  
Markus Hiebel ◽  
Venkat Aryan

In light of the debate on the circular economy, the EU strategy for plastics, and several national regulations, such as the German Packaging Act, polymeric foam materials as well as hybrid packaging (multilayered plastic) are now in focus. To understand the environmental impacts of various tray solutions for meat packaging, a comparative environmental assessment was conducted. As an environmental assessment method, a life cycle assessment (LCA) was applied following the ISO standards 14040/44. The nine packaging solutions investigated were: PS-based trays (extruded polystyrene and extruded polystyrene with five-layered structure containing ethylene vinyl alcohol), PET-based trays (recycled polyethylene terephthalate, with and without polyethylene layer, and amorphous polyethylene terephthalate), polypropylene (PP) and polylactic acid (PLA). The scope of the LCA study included the production of the tray and the end-of-life stage. The production of meat, the filling of the tray with meat and the tray sealing were not taken into account. The results show that the PS-based trays, especially the mono material solutions made of extruded polystyrene (XPS), show the lowest environmental impact across all 12 impact categories except for resource depletion. Multilayer products exhibit higher environmental impacts. The LCA also shows that the end-of-life stage has an important influence on the environmental performance of trays. However, the production of the trays dominates the overall results. Furthermore, the sensitivity analysis illustrates that, even if higher recycling rates were realised in the future, XPS based solutions would still outperform the rest from an environmental perspective.


Resources ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 32 ◽  
Author(s):  
Iulia Dolganova ◽  
Anne Rödl ◽  
Vanessa Bach ◽  
Martin Kaltschmitt ◽  
Matthias Finkbeiner

Changes in the mobility patterns have evoked concerns about the future availability of certain raw materials necessary to produce alternative drivetrains and related batteries. The goal of this article is to determine if resource use aspects are adequately reflected within life cycle assessment (LCA) case studies of electric vehicles (EV). Overall, 103 LCA studies on electric vehicles from 2009 to 2018 are evaluated regarding their objective, scope, considered impact categories, and assessment methods—with a focus on resource depletion and criticality. The performed analysis shows that only 24 out of 76 EV LCA and 10 out of 27 battery LCA address the issue of resources. The majority of the studies apply one of these methods: CML-IA, ReCiPe, or Eco-Indicator 99. In most studies, EV show higher results for mineral and metal resource depletion than internal combustion engine vehicles (ICEV). The batteries analysis shows that lithium, manganese, copper, and nickel are responsible for the highest burdens. Only few publications approach resource criticality. Although this topic is a serious concern for future mobility, it is currently not comprehensively and consistently considered within LCA studies of electric vehicles. Criticality should be included in the analyses in order to derive results on the potential risks associated with certain resources.


2015 ◽  
Vol 814 ◽  
pp. 498-503
Author(s):  
Yu Feng Zhang ◽  
Xian Zheng Gong ◽  
Zhi Hong Wang ◽  
Yu Liu

The development of eco-materials has become an important direction of materials science. Using appropriate methods to evaluate the environmental impacts caused by materials production is important for eco-materials research. For the purpose of obtaining more objective results to environment impacts, several exergy-based methods to indicate resource depletion have been established. However, no proper exergy-based evaluation methods for emissions in China have been reported. The objective of this study is to establish comprehensive exergy-based characterization model for life cycle assessment, and to apply this model to steel production.


Sign in / Sign up

Export Citation Format

Share Document