Accelerating the energy transition to achieve carbon neutrality

2022 ◽  
Vol 177 ◽  
pp. 105957
Author(s):  
Lizette De La Peña ◽  
Ru Guo ◽  
Xiaojing Cao ◽  
Xiaojing Ni ◽  
Wei Zhang
Energy Policy ◽  
2021 ◽  
Vol 155 ◽  
pp. 112374
Author(s):  
Yanfang Zhang ◽  
Xunpeng Shi ◽  
Xiangyan Qian ◽  
Sai Chen ◽  
Rui Nie

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Shu Zhang ◽  
Wenying Chen

AbstractA profound transformation of China’s energy system is required to achieve carbon neutrality. Here, we couple Monte Carlo analysis with a bottom-up energy-environment-economy model to generate 3,000 cases with different carbon peak times, technological evolution pathways and cumulative carbon budgets. The results show that if emissions peak in 2025, the carbon neutrality goal calls for a 45–62% electrification rate, 47–78% renewable energy in primary energy supply, 5.2–7.9 TW of solar and wind power, 1.5–2.7 PWh of energy storage usage and 64–1,649 MtCO2 of negative emissions, and synergistically reducing approximately 80% of local air pollutants compared to the present level in 2050. The emission peak time and cumulative carbon budget have significant impacts on the decarbonization pathways, technology choices, and transition costs. Early peaking reduces welfare losses and prevents overreliance on carbon removal technologies. Technology breakthroughs, production and consumption pattern changes, and policy enhancement are urgently required to achieve carbon neutrality.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5681
Author(s):  
Eunjung Lim

South Korea and Japan are two large contributors to global greenhouse gas emissions. In October 2020, President Moon Jae-in and Prime Minister Suga Yoshihide declared that their countries would aim for carbon neutrality by 2050. The Moon administration presented the Korean version of the New Deal that includes its Green New Deal, whereas the Suga administration completed its strategy aiming for green growth. Both countries emphasize the importance of energy transition through the expansion of green energy in power generation. However, they show some significant differences in dealing with nuclear energy. The purpose of this article is to compare the two countries’ energy policies and analyze the rationales and political dynamics behind their different approaches to nuclear energy. The study reveals that the contrast between the two political systems has resulted in differences between their policies. This study depends on comparative methods that use primary sources, such as governmental documents and reports by local news media.


2021 ◽  
Vol 16 (4) ◽  
pp. 98-124
Author(s):  
Tatiana Lanshina ◽  
◽  
Dmitry Stoyanov ◽  
Arina Loginova ◽  
◽  
...  

In 2020, despite the global economic crisis caused by the COVID-19 pandemic, it became clear that decarbonization and energy transition had become strategic goals rather than market trends. Moreover, they have become part of the broader and more ambitious plans of the world’s largest economies to move toward carbon neutrality by the middle of the 21st century. These economies include the European Union, the U.S., China, Japan and Korea. In Russia, these trends are typically viewed through the prism of risk: carbon neutrality implies a dramatic decrease in demand for fossil fuels, the production and export of which still play a key role in the Russian economy. However, apart from the risk to traditional sources of income, the global transition to carbon neutrality creates new opportunities for the development and diversification of the Russian economy, as well as for international cooperation in new areas. This article is devoted to the general identification of such opportunities. The authors perform a content analysis of the official plans of the largest economies related to achieving carbon neutrality by 2050–60. The main areas in which actions will be taken are identified. The current state of the corresponding industries in Russia and the possibilities for improvement are investigated. On the basis of this analysis, promising directions for the development of the Russian economy are proposed in which the implementation of large-scale international economic cooperation is possible in the coming decades.


2021 ◽  
Vol 13 (7) ◽  
pp. 3834
Author(s):  
Marina Blohm

The world is fighting against the impacts of the climate crisis. Although the technical feasibility of 100% renewable energy systems was already verified by a variety of research studies, there were still more than 200 GW of unsustainable new coal power capacity under construction at a global level in 2018. To achieve the required carbon neutrality, current energy systems need to be transformed toward sustainable energy. The review of the literature has shown that several barriers for carbon-neutral technologies exist, which currently impede the sustainable transition. This paper focuses on the development of an enabling framework to overcome existing barriers to facilitate sustainable and carbon-neutral technologies at the national level. Additionally, it should support decision makers to consider all underlying criteria of this urgently needed energy transition. The criteria of such an enabling framework can be classified in 11 categories, which are (1) environmental and ecological protection; (2) society, culture, and behavior; (3) equity and justice; (4) knowledge; (5) energy markets; (6) energy policy; (7) legal requirements; (8) finance; (9) institutions; (10) infrastructure; and (11) clash of interests. Even though some criteria differ from country to country, a strong governmental support for the transition is always required to be successful.


Significance In a scenario in which it becomes increasingly evident that carbon neutrality will not be reached by 2050, governments may switch the focus of spending from the energy transition towards measures designed to address a changing climate. This is more likely in the developing world, which has less chance of reaping the economic opportunities of energy transition. Impacts Governments will have to incorporate both transitioning to clean energy and resilience against climate change impacts into their policies. As economies recover from the pandemic, developing countries' calls for financial assistance with energy transition costs will rise. Developed nations will emerge from the pandemic with stretched budgets, and some will face pressure to spend less on international aid. The need for heightened international cooperation to deliver the energy transition worldwide will test existing institutions.


2021 ◽  
Vol 13 (22) ◽  
pp. 12374
Author(s):  
Nida Khan ◽  
Kumarasamy Sudhakar ◽  
Rizalman Mamat

Modern civilization is heavily reliant on petroleum-based fuels to meet the energy demand of the transportation sector. However, burning fossil fuels in engines emits greenhouse gas emissions that harm the environment. Biofuels are commonly regarded as an alternative for sustainable transportation and economic development. Algal-based fuels, solar fuels, e-fuels, and CO2-to-fuels are marketed as next-generation sources that address the shortcomings of first-generation and second-generation biofuels. This article investigates the benefits, limitations, and trends in different generations of biofuels through a review of the literature. The study also addresses the newer generation of biofuels highlighting the social, economic, and environmental aspects, providing the reader with information on long-term sustainability. The use of nanoparticles in the commercialization of biofuel is also highlighted. Finally, the paper discusses the recent advancements that potentially enable a sustainable energy transition, green economy, and carbon neutrality in the biofuel sector.


Georesursy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 17-23
Author(s):  
Valeriy A. Kryukov ◽  
Dmitriy V. Milyaev ◽  
Anastasiya D. Savelieva ◽  
Dmitriy I. Dushenin

The processes of global energy transition are increasingly becoming one of the main driving forces of both the transformation of the existing market model and the technological foundations of the functioning of energy facilities. The reorientation of the world economy towards decarbonization threatens the stability of the functioning of many previously seemingly unshakable technological solutions and approaches in the field of system integration of the fuel and energy complex, which, in turn, stimulates the search for a new paradigm of its development. The manifestations of transformation are observed at various levels of the economic hierarchy: inter-country, country and intra-country. The development of mechanisms for the response of Russian manufacturers to the realities of the energy transition requires testing at real facilities. According to the authors, Tatarstan can become an indicative region for the development of approaches to achieving carbon neutrality. For a preventive forecast of the attainability of ESG (Environmental, Social and Governance) indicators, the authors propose a conceptual approach to assessing the development of decarbonization technologies, based on a combination of economic and mathematical methods, which allows us to develop an organizational and legal basis for the process, form and evaluate criteria for the effectiveness of innovations and the conditions for their implementation.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5138
Author(s):  
Paulina Rodríguez Fiscal ◽  
Rallou Taratori ◽  
Marie Abigail Pacho ◽  
Christos S. Ioakimidis ◽  
Sesil Koutra

One of the key challenges of developing countries is to tackle the mitigation of the impacts of rapid and uncontrolled urbanization. Assessing this phenomenon is crucial to lessen the consequences for the environment and society. ‘Literature has been concentrated in planning strategies for the cities’ adaptation and engagements to the principles of green development ensuring a long-term quality of life for their citizens. Hereby, smart technologies and applications consist of two of the most encouraging concepts for solutions for achieving the 2030 and 2050 horizon targets towards clean energy transition and carbon neutrality. In academia, scholars have already raised the importance of ‘smartness’ to define the adaptative patterns for the global pressures of climate change and uncontrolled urban growth. The mitigation of these phenomena is crucial to ensure the cities’ future and lessen their impacts. This study seeks a strategic and smart-driven vision to leverage smartness on the phenomenon of rapid urbanization that occurred in the case of Beijing, China. Defining and evaluating the environmental impacts in line with the RIAM approach as one of its main targets. Future works can be focused on addressing solutions in similar cases in further developing countries to not only overcome environmental, but also economic, social, and digital complications.


2021 ◽  
Vol 2 (3) ◽  
pp. 49-56
Author(s):  
John Vourdoubas

Clean energy transition in islands is important and urgent in the current era of climate change. The possibility of de-carbonizing the heating and cooling sector in the island of Crete, Greece has been investigated. Fossil fuels are used in Crete in electricity generation, in heat and cooling production as well as in transportation. The use of various renewable and non-renewable fuels as well as the technologies used in heat and cooling generation has been examined together with the annual changes in fossil fuels consumption during the last years. Various renewable energies like solar energy, biomass and low enthalpy geothermal energy combined with renewable electricity could cover all the heating and cooling requirements in Crete totally eliminating the use of fossil fuels. Their technologies are mature, reliable, and cost efficient.  Renewable and low cost electricity can be easily generated by the abundant solar and wind energy resources in Crete powering electric systems generating heat and cooling. Current work indicates that the heating and cooling sector in Crete can be de-carbonized. This would result in the mitigation of climate change complying with the European goal for carbon neutrality in Europe by 2050.


Sign in / Sign up

Export Citation Format

Share Document