scholarly journals Recoverable resources from pot ale & spent wash from Scotch Whisky production

2022 ◽  
Vol 179 ◽  
pp. 106114
Author(s):  
Christine Edwards ◽  
Calum C. McNerney ◽  
Linda A. Lawton ◽  
Joseph Palmer ◽  
Kenneth Macgregor ◽  
...  
Author(s):  
N. Golub ◽  
M. Potapova ◽  
M. Shinkarchuk ◽  
O. Kozlovets

The paper deals with the waste disposal problem of the alcohol industry caused by the widespread use of alcohol as biofuels. In the technology for the production of alcohol from cereal crops, a distillery spent wash (DSW) is formed (per 1 dm3 of alcohol – 10–20 dm3 DSW), which refers to highly concentrated wastewater, the COD value reaches 40 g O2/dm3. Since the existing physical and chemical methods of its processing are not cost-effective, the researchers develop the processing technologies for its utilization, for example, an anaerobic digestion. Apart from the purification of highly concentrated wastewater, the advantage of this method is the production of biogas and highquality fertilizer. The problems of biotechnology for biogas production from the distillery spent wash are its high acidity–pH 3.7–5.0 (the optimum pH value for the methanogenesis process is 6.8–7.4) and low nitrogen content, the lack of which inhibits the development of the association of microorganisms. In order to solve these problems, additional raw materials of various origins (chemical compounds, spent anaerobic sludge, waste from livestock farms, etc.) are used. The purpose of this work is to determine the appropriate ratio of the fermentable mixture components: cosubstrate, distillery spent wash and wastewater of the plant for co-fermentation to produce an energy carrier (biogas) and effective wastewater treatment of the distillery. In order to ensure the optimal pH for methanogenesis, poultry manure has been used as a co-substrate. The co-fermentation process of DSW with manure has been carried out at dry matter ratios of 1:1, 1:3, 1:5, 1:7 respectively. It is found that when the concentration of manure in the mixture is insufficient (DSW/manure – 1:1, 1:3), the pH value decreases during fermentation which negatively affects methane formation; when the concentration of manure in the mixture is increased (DSW/manure – 1:5, 1:7), the process is characterized by a high yield of biogas and methane content. The maximum output of biogas with a methane concentration of 70 ± 2% is observed at the ratio of components on a dry matter “wastewater: DSW: manure” – 0,2:1:7 respectively. The COD reduction reaches a 70% when using co-fermentation with the combination of components “wastewater: DSW: manure” (0,3:1:5) respectively.


2021 ◽  
Vol 11 (4) ◽  
pp. 1410
Author(s):  
Martina Daute ◽  
Frances Jack ◽  
Irene Baxter ◽  
Barry Harrison ◽  
John Grigor ◽  
...  

This study compared the use of three sensory and analytical techniques: Quantitative Descriptive Analysis (QDA), Napping, and Gas Chromatography-Mass Spectrometry (GC-MS) for the assessment of flavour in nine unmatured whisky spirits produced using different yeasts. Hierarchical Multiple Factor Analysis (HMFA) showed a similar pattern of sample discrimination (RV scores: 0.895–0.927) across the techniques: spirits were mostly separated by their Alcohol by Volume (ABV). Low ABV spirits tended to have heavier flavour characteristics (feinty, cereal, sour, oily, sulphury) than high ABV spirits, which were lighter in character (fruity, sweet, floral, solventy, soapy). QDA differentiated best between low ABV spirits and GC-MS between high ABV spirits, with Napping having the lowest resolution. QDA was time-consuming but provided quantitative flavour profiles of each spirit that could be readily compared. Napping, although quicker, gave an overview of the flavour differences of the spirits, while GC-MS provided semi-quantitative ratios of 96 flavour compounds for differentiating between spirits. Ester, arenes and certain alcohols were found in higher concentrations in high ABV spirits and other alcohols and aldehydes in low ABV spirits. The most comprehensive insights on spirit flavour differences produced by different yeast strains are obtained through the application of a combination of approaches.


Author(s):  
Anna Hulda Olafsdottir ◽  
Harald Ulrik Sverdrup

AbstractThe long-term supply of nickel to society was assessed with the WORLD7 model for the global nickel cycle, using new estimates of nickel reserves and resources, indicating that the best estimate of the ultimately recoverable resources for nickel is in the range of 650–720 million ton. This is significantly larger than earlier estimates. The extractable amounts were stratified by extraction cost and ore grade in the model, making them extractable only after price increases and cost reductions. The model simulated extraction, supply, ore grades, and market prices. The assessment predicts future scarcity and supply problems after 2100 for nickel. The model reconstructs observed extraction, supply and market prices for the period 1850–2020, and is used to simulate development for the period 2020–2200. The quality of nickel ore has decreased significantly from 1850 to 2020 and will continue to do so in the future according to the simulated predictions from the WORLD7 model. For nickel, extraction rates are suggested to reach their maximum value in 2050, and that most primary nickel resources will have been exhausted by 2130. After 2100, the supply per capita for nickel will decline towards exhaustion if business-as-usual is continuing. This will be manifested as reduced supply and increased prices. The peak year can be delayed by a maximum of 100 years if recycling rates are improved significantly and long before scarcity is visible.


2021 ◽  
Vol 18 (2) ◽  
pp. 323-338
Author(s):  
Xiong-Qi Pang ◽  
Zhuo-Heng Chen ◽  
Cheng-Zao Jia ◽  
En-Ze Wang ◽  
He-Sheng Shi ◽  
...  

AbstractNatural gas hydrate (NGH) has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973. At least 29 global estimates have been published from various studies so far, among which 24 estimates are greater than the total conventional gas resources. If drawn in chronological order, the 29 historical resource estimates show a clear downward trend, reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time. A time series of the 29 estimates was used to establish a statistical model for predict the future trend. The model produces an expected resource value of 41.46 × 1012 m3 at the year of 2050. The statistical trend projected future gas hydrate resource is only about 10% of total natural gas resource in conventional reservoir, consistent with estimates of global technically recoverable resources (TRR) in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches. Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources, only those on the very top of the gas hydrate resource pyramid will be added to future energy supply. It is unlikely that the NGH will be the major energy source in the future.


2009 ◽  
Vol 115 (3) ◽  
pp. 198-207 ◽  
Author(s):  
H. Berbert de Amorim Neto ◽  
B. K. Yohannan ◽  
T. A. Bringhurst ◽  
J. M. Brosnan ◽  
S. Y. Pearson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document