scholarly journals High-speed machining tool-steel chips as an outstanding raw material for indirect additive manufacturing?

2021 ◽  
pp. 100207
Author(s):  
R.F. Santos ◽  
A.R. Farinha ◽  
R. Rocha ◽  
C. Batista ◽  
M.T. Vieira
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Vincent A Balogun ◽  
Isuamfon F Edem ◽  
Etimbuk B Bassey

The use of electrical energy and coolants/lubricants has been widely reported in mechanical machining. However, increased research and process innovation in high speed machining has brought about optimised manufacturing cycle times. This has promoted dry machining and the use of minimum quantity lubrication (MQL). This work understudies the impact of different cutting environments in machining H13 tool steel alloys at transition speed regime with emphasis on sustainable machining of the alloy. To achieve this, end milling tests were performed on AISI H13 steel alloy (192 BHN) on a MIKRON HSM 400 high speed machining centre using milling inserts. After each cutting pass, the milling insert was removed for tool wear measurement on the digital microscope. The electrical power consumed was measured with the Fluke 435 power clamp meter mounted on the three phase cable at the back of the machine. It was discovered that MQL has a promising advantage in terms of tool life with 25 minutes of machining, net power requirement of 10% when compared to dry cutting, and environmental benefits when machining H13 tool steel alloy. This work is fundamentally important in assessing the environmental credentials and resource efficiency regime for green machining of H13 tool steel alloysKeywords— H13 tool steel, green machining, process optimization, tool life, cutting environments, energy consumption 


2015 ◽  
Vol 85 (9-12) ◽  
pp. 2401-2411 ◽  
Author(s):  
Konstantinos Salonitis ◽  
Laurent D’Alvise ◽  
Babis Schoinochoritis ◽  
Dimitrios Chantzis

Author(s):  
Tsvetan Kaldashev ◽  
Petar Hadzhiyski ◽  
Galina Nikolcheva

This report examined tool wear in high-speed machining of tool steel with a hardness of HRC 63. Wear monitored periodically using the device for automatic geometric correction tool (length and radius) situated in the working area of the machine. The study was conducted on milling machine RAIS M400 with CNC Heidenhain iTNC 530i.


2015 ◽  
Vol 830-831 ◽  
pp. 112-115 ◽  
Author(s):  
Anil Kumar Jain ◽  
Kasala Narasaiah ◽  
Shibu Gopinath

In present scenario most of airframe components employ aluminum alloy materials having wall thickness of 1.2 to 3mm. With advancement of manufacturing techniques such as high speed machining, it is possible to machine components with wall/floor thickness up to 0.3 to 0.5 mm with high aspect ratio. The aim of making such parts is to reduce weight of payload. The machining of monolithic structure involves removing of material up to 95% from the raw material. The objective of the study is to achieve maximum material removal rate without compromise on geometry, dimensional accuracy while machining the part. This paper proposes a working methodology for high speed machining which includes efficient process planning, based on static and dynamic analysis. This paper provides insight knowledge of selection of cutting tool, fixture design, clamping method, cutting process parameters; machine tool and computer aided manufacturing (CAM) strategy, optimum stock for minimal bending and distortion. This technology has been demonstrated in hexagonal test specimen of 0.5 mm thin wall and also proven on the indigenous developed global positioning system (GPS) components.


Author(s):  
N. M. Vaxevanidis ◽  
N. I. Galanis ◽  
G. P. Petropoulos ◽  
N. Karalis ◽  
P. Vasilakakos ◽  
...  

High-speed machining is widely applied for the processing of lightweight materials and also structural and tool steels. These materials are intensively used in the aerospace and the automotive industries. The advantages of high-speed machining lie not only in the speed of machining (lower costs and higher productivity) but also in attaining higher surface quality (prescribed surface roughness without surface defects). Based on this concept, in the present paper the high speed-dry turning of AISI O, (manganese-chromium-tungsten / W.-Nr. 1.2510) tool-steel specimens is reported. The influence of the main machining parameters i.e., cutting speed, feed rate and depth of cut on the resulted center-line average surface roughness (Ra) is examined. Types of wear phenomena occurred during the course of the present experimental study as well as tool wear patterns were also monitored.


2013 ◽  
Vol 58 (2) ◽  
pp. 549-553 ◽  
Author(s):  
P. Ambroza ◽  
S. Bockus ◽  
L. Kavaliauskiene

Microstructure and properties of structural steel subjected to overlay welding with secondary materials powder is investigated. Crushed glass, grinding wheels (SiC), hard metals plates, high speed steel and cast iron chips as well as marble powders were used in automatic overlay welding of steel by low carbon wire. Powder spread over the steel surface and melted by continuously supplied wire arc enabled to obtain layers with graphite and carbides inclusions in the matrix; hardness of the matrix depends on the phases contained in it: martensite, troostite and residual austenite as well as secondary carbides. Depending on materials used for overlay welding the layers were obtained which abrasive wear resistance became equal to that of high alloyed hardened tool steel. Wear of these layers is much more less in comparison with low alloyed hardened tool steel.


2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-541-Pr9-546 ◽  
Author(s):  
A. Molinari ◽  
M. Nouari

Sign in / Sign up

Export Citation Format

Share Document