scholarly journals Impact of Cutting Environments on Sustainable Machining of H13 Tool Steel Alloy

2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Vincent A Balogun ◽  
Isuamfon F Edem ◽  
Etimbuk B Bassey

The use of electrical energy and coolants/lubricants has been widely reported in mechanical machining. However, increased research and process innovation in high speed machining has brought about optimised manufacturing cycle times. This has promoted dry machining and the use of minimum quantity lubrication (MQL). This work understudies the impact of different cutting environments in machining H13 tool steel alloys at transition speed regime with emphasis on sustainable machining of the alloy. To achieve this, end milling tests were performed on AISI H13 steel alloy (192 BHN) on a MIKRON HSM 400 high speed machining centre using milling inserts. After each cutting pass, the milling insert was removed for tool wear measurement on the digital microscope. The electrical power consumed was measured with the Fluke 435 power clamp meter mounted on the three phase cable at the back of the machine. It was discovered that MQL has a promising advantage in terms of tool life with 25 minutes of machining, net power requirement of 10% when compared to dry cutting, and environmental benefits when machining H13 tool steel alloy. This work is fundamentally important in assessing the environmental credentials and resource efficiency regime for green machining of H13 tool steel alloysKeywords— H13 tool steel, green machining, process optimization, tool life, cutting environments, energy consumption 

Author(s):  
Yue Yin ◽  
LianShui Guo ◽  
Ning Han ◽  
Ji Zheng ◽  
Pengpeng Zhang

High speed machining is widely used in manufacturing. For its high cutting speed, high feeding rate, and high machining accuracy, its requirements for cutting trajectory in high speed machining are so strict that only continuous and smooth trajectories with even cutting loads can lead to high machining efficiency and accuracy. The traditional row or ring machining trajectory fails to meet these requirements. In order to acquire the continuous and smooth machining trajectories, and to avoid load mutation in the machining process, some researchers developed a curvilinear cutting trajectory generating method based on partial differential equation. This trajectory, however, is still made up from free form curve segment, and unable to completely eliminate the effects on smoothness by line segment interpolation, which has a very adverse effect on the efficiency, tool life and machining accuracy. A new strategy to generate a continuous and smooth cavity cutting trajectories in high speed machining is introduced in this article. The new trajectory determines the necessity-nodes from outside (the boundary) to inside in the way of spiral cutting. It starts from the cavity center with spiral expanding, and each cutting loop adopts end connection between straight line and the tangent arc, meeting continuous first-order constraint satisfaction. The smooth trajectory reduces the amplitude and directing mutation of cutting force, thus effectively avoids the impact on the machining efficiency and machining accuracy by speeding down in the corner. The strategy also, by controlling the row space, ensures that there is no cutting residual. A cavity machining programming system based on this strategy is developed on Siemens UG-CAM module. The manufacturing of triangle cavities is studied as a case. It turns out that the new trajectory improves efficiency by 26.23% compared with the traditional one. It ensures a stable operation of the cutting tool in machining, therefore effectively extends the tool life. The main advantages are that the new strategy adopts the geometrical drawing strategy and the trajectories are all made up from the straight lines and the tangent arcs. The trajectory can greatly reduce NC code. It thoroughly removes the effort to mind the smooth, continuity and even cutting load of the tool-path.


2009 ◽  
Vol 83-86 ◽  
pp. 985-992 ◽  
Author(s):  
B.T. Hang Tuah Baharudin ◽  
Shamsuddin Sulaiman ◽  
Mohd Khairol A. Arifin ◽  
A.A. Faieza ◽  
S.M. Sapuan

The development and application of Titanium Aluminium Nitrate (TiAlN) coatings for cutting tools has led to dramatic tool life extension and the realisation of high speed machining for hardened materials. This results in longer tool life and makes it possible to employ higher cutting speeds and feed rates. In this study, a series of different TiAlN based coatings on micro grains solid carbides were tested on H13 Tool Steel. These advanced coatings are commercially available by coating manufacturer which are trade marks of Balzers UK. The aim of this experiment was to investigate the performance of micro tools coated with these coatings and compare with uncoated tools. The results will be used to determine whether coatings for micro tools will have any impact on the performance of the tools such as reducing cutting forces or improving machining quality. This will be achieved by means of analysing the cutting force data and 3-D surface roughness respectively. Result obtained shows that different coating had different performance, hence can be applied to specifically targeted machining operation. The results also highlight some of the differences in wear mechanism of micro tools.


2016 ◽  
Vol 7 (2) ◽  
pp. 86-92 ◽  
Author(s):  
Józef Kuczmaszewski ◽  
Ireneusz Zagórski ◽  
Piotr Zgórniak

Abstract This paper presents an overview of the state of knowledge on temperature measurement in the cutting area during magnesium alloy milling. Additionally, results of own research on chip temperature measurement during dry milling of magnesium alloys are included. Tested magnesium alloys are frequently used for manufacturing elements applied in the aerospace industry. The impact of technological parameters on the maximum chip temperature during milling is also analysed. This study is relevant due to the risk of chip ignition during the machining process.


1985 ◽  
Vol 107 (4) ◽  
pp. 325-335 ◽  
Author(s):  
R. Komanduri ◽  
D. G. Flom ◽  
M. Lee

Results of a four-year Advanced Machining Research Program (AMRP) to provide a science base for faster metal removal through high-speed machining (HSM), high-throughput machining (HTM) and laser-assisted machining (LAM) are presented. Emphasis was placed on turning and milling of aluminum-, nickel-base-, titanium-, and ferrous alloys. Experimental cutting speeds ranged from 0.0013 smm (0.004 sfpm) to 24,500 smm (80,000 sfpm). Chip formation in HSM is found to be associated with the formation of either a continuous, ribbon-like chip or a segmental (or shear-localized) chip. The former is favored by good thermal properties, low hardness, and fcc/bcc crystal structures, e.g., aluminum alloys and soft carbon steels, while the latter is favored by poor thermal properties, hcp structure, and high hardness, e.g., titanium alloys, nickel base superalloys, and hardened alloy steels. Mathematical models were developed to describe the primary features of chip formation in HSM. At ultra-high speed machining (UHSM) speeds, chip type does not change with speed nor does tool wear. However, at even moderately high speeds, tool wear is still the limiting factor when machining titanium alloys, superalloys, and special steels. Tool life and productivity can be increased significantly for special applications using two novel cutting tool concepts – ledge and rotary. With ledge inserts, titanium alloys can be machined (turning and face milling) five times faster than conventional, with long tool life (~ 30 min) and cost savings up to 78 percent. A stiffened rotary tool has yielded a tool life improvement of twenty times in turning Inconel 718 and about six times when machining titanium 6A1-4V. Significantly increased metal removal rates (up to 50 in.3/min on Inconel 718 and Ti 6A1-4V) have been achieved on a rigid, high-power precision lathe. Continuous wave CO2 LAM, though conceptually feasible, limits the opportunities to manufacture DOD components due to poor adsorption (~ 10 percent) together with high capital equipment and operating costs. Pulse LAM shows greater promise, especially if new laser source concepts such as face pump lasers are considered. Economic modeling has enabled assessment of HSM and LAM developments. Aluminum HSM has been demonstrated in a production environment and substantial payoffs are indicated in airframe applications.


2020 ◽  
Vol 856 ◽  
pp. 43-49
Author(s):  
Santosh Kumar Tamang ◽  
Nabam Teyi ◽  
Rinchin Tashi Tsumkhapa

Machining is one of the major manufacturing processes that converts a raw work piece of arbitrary size into a finished product of definite shape of predetermined size by suitably controlling the relative motion between the tool and the work. Lately, machining process is shifting towards high speed machining (HSM) from conventional machining to improve and efficiently increase production, and towards dry machining from excessive coolant used wet machining to improve economy of production. And the tools used are mostly hardened alloys to facilitate HSM. The work piece materials are continually improving their properties by emergence and development of newer and high resistive super alloys (HRSA). In this paper an attempt has been made to validate an experimental result of cutting force obtained by performing HSM on an HRSA Inconel 718, by comparing it with the numerical result obtained by simulating the same setting using DEFORM 3D software. Based on the comparison it is found that the simulated results exhibit close proximity with the experimental results validating the experimental results and the effectiveness of the software.


Author(s):  
Xueping Zhang ◽  
Rajiv Shivpuri ◽  
Anil K. Srivastava

Beside strain intensity, stress triaxiality (pressure-stress states) is the most important factor to control initiation of ductile fracture in chip segmentation through affecting the loading capacity and strain to failure. The effect of stress triaxiality on failure strain is usually assessed by dynamic Split Hopkinson Pressure Bar (SHPB) or quasi-static tests of tension, compression, torsion, and shear. However, the stress triaxialities produced by these tests are considerably different from those in high speed machining of titanium alloys where adiabatic shear bands (ASB) are associated with much higher strains, stresses and temperatures. This aspect of shear localization and fracture are poorly understood in previous research. This paper aims to demonstrate the role of stress triaxiality in chip segmentation during machining titanium alloy using finite element method. This research promotes a fundamental understanding of thermo-mechanics of the high-speed machining process, and provides a logical insight into the fracture mechanism in discontinuous chips.


Author(s):  
E. O. Ezugwu ◽  
J. Bonney ◽  
W. F. Sales ◽  
R. B. da Silva

Usage of titanium alloys has increased since the past 50 years despite difficulties encountered during machining. In this study PCD tools were evaluated when machining Ti-6Al-4V alloy at high speed conditions under high pressure coolant supplies. Increase in coolant pressure tend to improve tool life and minimise adhesion of the work material on the cutting tool during machining. Adhesion can be accelerated by the susceptibility of titanium alloy to galling during machining.


2010 ◽  
Vol 136 ◽  
pp. 148-152
Author(s):  
Ming Jun Feng ◽  
C.T. Sun ◽  
Xue Feng Wang ◽  
H.J. Sun

According to the characteristics and cutting requirements of the compressor impeller, such as low rigidity, easy to produce deformation and vibration in machining process, the high speed machining technology was adopted to reduce time, the virtual manufacturing technology was used to solve processing problems in computer before the trial machining and improved programming speed and other key supporting technologies were adopted. The study shows that this green processing of impeller had high machining efficiency, good surface roughness and product quality, low production cost and light environmental pollution. It accords with modern green machining development trend.


Sign in / Sign up

Export Citation Format

Share Document